Development of Real-Time Monitoring and Warning System for Bridge Structure

Main Article Content

ittipong Khemapech

Abstract

Engineering structure has been regarded as one of the physical aspects of societal and civil development and evolution. It also impacts life quality and safety of the civilian. Proper inspection and detection are thus crucial both during regular and unsafe events. A real-time monitoring and warning system for bridge structure (SPAN NeTwork – SPANNeT) has been developed and described in this paper. SPANNeT applies wireless sensor network, real-time and decentralized stream processing and weighted attack graph (WAG) based upon the measured bending strain. Major contributions include an effective, accurate and energy-aware data communication and real-time monitoring and warning mechanisms for existing bridge structures. SPANNeT has been tested and evaluated by means of computer-based simulation and on-site levels. According to the measurements, the reported strains are within the scale of 10 microstrains and the observed maximum values are 25 to 30 microstrains during normal operation. Given protocol provides at least 90% of data communication reliability. SPANNeT is capable of real-time data report, monitoring and warning efficiently conforming to the predefined thresholds which can be adjusted regarding user’s requirements and structural engineering characteristics.

Article Details

How to Cite
[1]
ittipong Khemapech, “Development of Real-Time Monitoring and Warning System for Bridge Structure”, JIST, vol. 8, no. 2, pp. 83–96, Dec. 2018.
Section
Research Article: Internet of Things (IoT) (Detail in Scope of Journal)

References

1. ประชาชาติธุรกิจออนไลน์, “สร้างเพิ่ม10 แห่ง สะพานเจ้าพระยา "กทม.-ปริมณฑล”, 2556. [Online], Available: https://www.prachachat.net/news_detail.php?newsid= 1373518292, 2556. [Accessed Sept. 21, 2014].

2. ประชาชาติธุรกิจออนไลน์, “กทม.ทุ่มงบ 620 ล้านซ่อมสะพานเก่าทั่วกรุง”, 2556. [Online], Available: https://www.bangkokbiznews.com/ home/detail/politics/local/ 20120423/448143กทม.ทุ่มงบ-620-ล้านซ่อมสะพาน เก่าทั่วกรุง.html. [Accessed Sept. 21, 2014].

3. เว็บไซต์สำนักข่าว ไอ.เอ็น.เอ็น., “สตง.ตรวจเหตุสะพานต่างระดับหนองขามถล่ม”, 2556. [Online], Available: https://www.innnews.co.th/shownews/show?newscode= 463209. [Accessed Sept. 21, 2014].

4. เว็บไซต์เดลินิวส์, “ฝนถล่มน้ำป่าซัดสะพาน มอญสังขละบุรีพังมากขึ้น”, 2556. [Online], Available: https://www.dailynews.co.th/thailand/222336. [Accessed Sept. 28, 2014].

5. B. M. Imam and M.K. Chryssanthopoulos, “A Review of Metallic Bridge Failure Statistics”, In Proc. 5th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2010), Philadelphia, USA, 2010.

6. S. Jang, H. Jo, S. Cho, K.A. Mechitov, J. A. Rice, S.H. Sim, H. J. Jung, C.B. Yun, B. F. Spencer Jr. and G. Agha, “Structural Health Monitoring of a Cable-Stayed Bridge Using Smart Sensor Technology: Deployment and Evaluation”, Smart Structures and Systems, vol. 6, no. 5-6, pp. 439-459, 2010.

7. I. Khemapech, A. Miller, and I. Duncan, “An Energy Aware Protocol for Cyclic Monitoring Wireless Sensor Networks”, In Proc. 8th International Conference on Networking, Architecture, and Storage (IEEE NAS 2013), Xi’An, China, 2013, pp. 13-22.

8. I. Khemapech, “Feasibility Study of Direct Communication in Wireless Sensor Networks”. Procedia Computer Science, vol. 21, pp. 424-429, 2013.

9. W. Sansrimahachai, M. Weal and L. Moreau, “Stream ancestor function: A Mechanism for Fine-Grained Provenance in Stream Processing Systems”, In Proc. 6th IEEE International Conference on Research Challenges in Information Science (RCIS 2012), Valencia, Spain, 2012, pp. 245-256.

10. W. Sansrimahachai, L. Moreau and M. Weal, “An On-the Fly Provenance Tracking Mechanism for Stream Processing Systems”, In Proc. 12th IEEE/ACIS International Conference on Computer and Information
Science (ICIS 2013), Niigata, Japan, 2013, pp. 475-481.

11. S. Pakzad, G. L. Fenves, S. Kim and D. E. Culler, “Design and Implementation of Scalable Wireless Sensor Network for Structural Monitoring”, Journal of Infrastructure Systems, vol. 14, no. 1, pp. 89-101, 2008.

12. J. W. Park, S. Cho, H. J. Jung, C. B. Yun, S. Jang, H. Jo, B. F. Spencer Jr., T. Nagayama and J. Seo, “Long-Term Structural Health Monitoring System of a Cable-Stayed Bridge Based on Wireless Smart Sensor Networks and Energy Harvesting Techniques”, In Proc. 5th World Conference of Structural Control and Monitoring, Tokyo, Japan, 2010.

13. Computers & Structures, Inc., CSiBridge 2014 v16.1.0. [CD-ROM], CA, 2014.

14. ASSHTO, “AASHTO LRFD bridge design specifications,” 2012. [Online], Available: https://utc2.edu.vn/ Uploads/File/AASHTO%20LRFD%202012%20BridgeDesignSpecifications%206th%20Ed%20%28US%29.pdf. [Accessed Aug. 21, 2014].

15. กองทางหลวงพิเศษระหว่างเมือง กรมทางหลวง, “การกำหนดน้ำหนักรถบรรทุกตามประกาศผู้อำนวยการทางหลวงพิเศษ ทางหลวงแผ่นดิน และทางหลวงสัมปทาน”, 2548. [Online], Available: https://www.motorway.go.th/ index.php? option=com_content&view=article&id=207:2011-03-23-12-11-13&catid=13:2011-12-16-16-32-20&Itemid=51. [Accessed Aug. 5, 2014].

16. LORD Sensing MicroStrain, “We build sensing systems,” 2014. [Online], Available: https://www.microstrain. com. [Accessed Aug. 21, 2014].

17. G. Louthan, M. Haney, P. Hardwicke, P. Hawrylak, J. Hale, "Hybrid Extensions for Stateful Attack Graphs", In Proc. 9th Annual Cyber and Information Security Research Conference (CISR’14), 2014, pp. 101-104.