คุณสมบัติของคอนกรีตบล็อกลายกลวงชนิดไม้รับหน้าเหน็กและไม่ควบคุมความชื้นผสมเรือนบ้าและเล้าเช่นอ้อย

บุตรตระ ดั่งวิระ¹ สุทธิ จริยรีเวช² และ นิสัย มาทุก³
มหาวิทยาลัยธรรมศาสตร์ (ศูนย์รังสิต) คลองหลวง ปทุมธานี 12121

วันที่ 7 กรกฎาคม 2551 ตอบวันที่ 13 พฤศจิกายน 2551

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์ในการศึกษาคุณสมบัติต่างกลและความคงทนของคอนกรีตบล็อกลายกลวงชนิดไม้รับ
หน้าเหน็กและไม่ควบคุมความชื้นขนาด 70 x 190 x 390 มม.³ โดยทำการแทนที่หินผุซึ่งเป็นมวลรวมหลักที่มีส่วนใช้ใน
การผลิตคอนกรีตบล็อกด้วยแร่ดินบ้าจากเหมืองในอ่าวเกาะตะ จังหวัดลำปาง และเล้าเช่นอ้อยจากโรงงานผลิตน้ำตาล
ที่ใช้รัฐสัญญาเป็นเครื่องสำคัญในการดันน้ำเพื่อผลิตกระแสไฟฟ้า คุณสมบัติที่ทำการศึกษาประกอบด้วย องค์ประกอบทาง
เคมีและคุณสมบัติทางกายภาพของแร่ดินบ้าและเล้าเช่นอ้อย คุณสมบัติต่างกลและความคงทนของคอนกรีตบล็อกลายกลวง
ชนิดไม้รับหน้าเหน็กผสมของแร่ดินบ้าและเล้าเช่นอ้อย นอกจากนี้ได้ทำการบริบูรณ์บดคุณสมบัติของบล็อกทั้งสองกล
ข้อกำหนดตามมาตรฐานอุตสาหกรรม (แอ.) 58-2533 เพื่อประเมินอัตราส่วนการแทนที่ที่เหมาะสมของแร่ดินบ้าและ
เล้าเช่นอ้อยในหินผุเพื่อใช้เป็นวัสดุทดแทนคอนกรีตบล็อก โดยกำหนดเป็นการแทนที่ของแร่ดินบ้าและเล้าเช่นอ้อย
ในหินผุที่อัตราส่วนร้อยละ 0, 10, 15 และ 20 โดยนำหนัก อัตราส่วนร้อยละเป็นแบบดีเบรเดทกิ่ง 1 (w/c) ที่มีค่า 0.53-
0.64 โดยนำหนัก ซึ่งอยู่ในระดับในการซึมนุ่มได้

ผลการทดสอบพบว่า ซิลิคอนไฮโดรคลอริก (SiO₂) เป็นองค์ประกอบหลักของแร่ดินบ้าและเล้าเช่นอ้อยและค่า
คำนวณที่อายุ 28 วัน ของรันเทส์และเล้าเช่นอ้อยมีค่าร้อยละ 67 และ 53 ตามลำดับ ส่วนคุณสมบัติของบล็อก
คอนกรีตบล็อกที่หินผุผสมได้ดีและเล้าเช่นอ้อยว่า สัตว์สัตว์ที่เพิ่มขึ้นของแร่ดินบ้าและเล้าเช่นอ้อยมีผลทำให้นำ
หนัก ค่าการนำความร้อน ค่าสัมประสิทธิ์การดูดซับสิ่ง การพัดลมก้ามและความคงทนต่อการกัดกร่อนเนื่องจาก
การผลิตคอนกรีตบล็อกที่หินผุผสมเล้าเช่นอ้อยลดลง ในขณะที่ค่าสัมประสิทธิ์การดูดซับสิ่งของคอนกรีตบล็อกหินผุ
ผสมแร่ดินบ้าและปริมาณความชื้นสูงกว่าคอนกรีตบล็อกปกติที่ผสมหินผู้อย่างเดียว นอกจากนี้เนื่องจากนำเข้า
กำหนดตามมาตรฐานผลิตภัณฑ์อุตสาหกรรมเป็นเกณฑ์ที่สามารถใช้แร่ดินบ้าและเล้าเช่นอ้อยแทนที่ได้ร้อยละ 10 และ
20 โดยนำหนักหินผุ ตามลำดับ

¹ รองศาสตราจารย์ ภาควิชาสิ่งแวดล้อม คณะวิศวกรรมศาสตร์
² นักศึกษาปริญญาโท ภาควิชาสิ่งแวดล้อม คณะวิศวกรรมศาสตร์
³ นักวิจัย ภาควิชาสิ่งแวดล้อม คณะวิศวกรรมศาสตร์
Properties of Hollow Non-Load Bearing and Non-Moisture Controlling Concrete Block Containing Diatomite and Sugarcane Bagasse Ash

Burachat Chatveera 1, Sutee Jariyateeravate 2, and Natt Makul 3
Thammasat University, (Rangsit Center), Khlong Luang, Pathum Thani 12121

Abstract

This research is to study mechanical and durability of hollow non-load bearing and non-moisture controlling concrete block in a size of $70 \times 190 \times 390 \text{mm}^3$. Dusty limestone rock which is a main aggregate and widely used in concrete block production, is replaced with diatomite or sugarcane bagasse ash. The diatomite comes from a quarry in Mae-Tha district, Lampang province. In addition, the bagasse ash comes from a sugar production factory at which sugarcane is used as a fuel for boiling water in electricity-power generating process. The basic properties studied included chemical compositions and physical properties of diatomite and sugarcane bagasse ash. The mechanical and durability properties of hollow non-load concrete block containing diatomite and sugarcane bagasse ash are also investigated. Furthermore, the properties of both materials are compared with the specification criteria in accordance with the Thai Industrial Standard (TIS) 58-2533. The replacements of diatomite and sugarcane bagasse ash in dusty limestone rock were 0, 10, 15 and 20 % by weight and water-to-Portland cement Type I ratios were varied from 0.53 to 0.64 depending on formation conditions.

From the tested results, it was found that silicon dioxide (SiO_2) was a main composition for both diatomite and sugarcane bagasse ash and their strength activity indexes at the age of 28 days were 67% and 53%, respectively. The increase in proportions of diatomite and sugarcane bagasse ash resulted in the decrease of unit weight, thermal conductivity, sound absorption coefficient, strength development rate, and resistance due to acid attacks of dusty limestone rock-sugarcane bagasse ash concrete block. Whereas, the coefficient of sound absorption of dusty limestone rock-diatomite concrete block and moisture content are higher than that of the normal concrete block mixed with dusty limestone rock. Moreover, when comparing to the specification criteria of the TIS 58-2533, it can be concluded that the suitable use of diatomite and sugarcane bagasse ash to replace dusty limestone rock is 10 and 20 % by weight of dusty limestone rock, respectively.
1. บทนํา

ในปจจุบันการผลิตคอนกรีตล็อคกลางชนิดไม้เบ่งนําหนักและไม่เคยคุ้มครองชิ้นส่วน (Non-load bearing and non-moisture controlling concrete block) จําเป็นต้องใช้เป็นซีเมนต์ปูนเม็ดแรกประเภทที่ 1 นําและสามารถชิ้นส่วนได้แก่ หินผุดหรือกระดาษผสมรวมกัน ทั้งนี้เป็นที่ทราบกันดีว่า หินผุด (Dusty limestone rock) ที่นํามาใช้ผสมคอนกรีตล็อคเป็นหินชนิดนี้ได้มาจากกระจกอิฐเชิงเดียวกันกับการผลิตชิ้นส่วนก๊าซเชิงสันทอนกับกันจึงเป็นการทําลายธรรมชาติ ดังนั้นการพัฒนาคอนกรีตล็อคโดยใช้วัสดุอิฐผสมคอนกรีต หินผุดเชิงส่วนขึ้นเป็นไปได้ โดยจะต้องผลิตวัสดุเหลือใช้ตามธรรมชาติหรือจากการผลิตเติมที่มีนําหนักเบาเพื่อสะดวกในการทํางาน มีความคงทนการ และมีปริมาณมากพอ กับความต้องการ [1-3] เป็นต้น

ในการวิจัยนี้ได้มีการนําเดินเบ้า (Diatomite) และเจาะลายคอนกรีต (Sugarcane bagasse ash) มาเป็นวัสดุimus มวลประกอบหินผุด โดยวัสดุทั้งสองชนิดมีคุณสมบัติทางกายภาพคือ นําหนักเบาและทนกระแทกหนักผุด และมีปริมาณมากพอในการใช้เป็นวัสดุในการผลิตโดยที่เดินเบ้าที่เกิดตามธรรมชาติในภาคเหนือมีปริมาณมากกว่า 250 ล้านตัน ในพื้นที่ประมาณ 4,000 กม.² ในขณะที่นํา ฐานอ้อยเป็นผลสดอยู่จากโรงสีตะกแตงไฟที่ใช้ ฐานอ้อยเป็นเชื้อเพลิงในการตีนําเพื่อให้นําไปบูม เครื่องถ่านไฟฟ้าเพื่อผลิตกระแสไฟฟ้า โดยมีปริมาณอยู่ ประมาณ 5 แสนตันต่อปี [3] ซึ่งนับได้ว่าชุดชั้น 2 ชนิด มีปริมาณมากพอที่จะนําไปใช้เป็นวัสดุใบที่ได้จากการจุ๊ปปุ๊ ซึ่งเป็นสูตรเป็นในการศึกษาเพื่อพัฒนาการผลิตล็อค ได้โดยเฉพาะการผลิตคอนกรีตล็อคชนิดนี้รับนําหนักที่มี นําหนักเบากว่าคอนกรีตล็อคที่ผลิตกันในปจจุบัน

2. ระเบียบวิธีวิจัย

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาคุณสมบัติทางกายภาพของเดินเบ้าและเจาะ ฐานอ้อย จากนั้นจึงทำการทดสอบคุณสมบัติทางกลและความคงทนของคอนกรีตล็อคกลางชนิดไม้เบ่งนําหนักที่มี ส่วนผสมของเดินเบ้าและเจาะลายคอนกรีตที่ได้มานําไปยังองค์ประกอบตามมาตรฐานอุตสาหกรรม (มาตรฐานผลิตภัณฑ์อุตสาหกรรม (มอ.) 58-2533 [4]) เพื่อประเมินทางวิทยาสํานักการแทนที่ของเดินเบ้าและเจาะลายคอนกรีตอีกอย่างหนึ่งที่เหมาะสมสำหรับผลิตคอนกรีตล็อคกลางชนิดไม้เบ่งนําหนัก

ระเบียบวิธีการวิจัยเริ่มจากการนําเดินเบ้าและเจาะลาย เป็นการทดสอบของคุณสมบัติเพื่อหาค่าคงคูณและคุณสมบัติ ทางกายภาพ ต่อไปจึงทำการออกแบบส่วนผสมของ คอนกรีตล็อค เลือกขึ้นบัดได้อย่างเหมาะสมนําไปทดลอง ดูการทำงานของคอนกรีตล็อคเพื่อทดสอบคุณสมบัติทางกลและความคงทน แล้วนําผลที่ได้ไปเปรียบเทียบกับมาตรฐาน ผลิตภัณฑ์อุตสาหกรรม 58-2533 [4]

2.1 วัสดุที่ใช้ในการศึกษา

1) เดินเบ้า จากอ๊อกซอนแทะ จังหวัดลพบุรี มีลักษณะและรูปรูป ล้อมหรือขาวอมชมพู และบางแห่งมี เนื้อแดงความสามารถของดินใน ขาวลึกสามารถนําไปใช้ ประโยชน์ได้หลายอย่าง เช่น ตัวจุดน้ํา นําแก๊ส คาร์บอน ร้อน และนําไฟฟ้า เป็นต้น [2-3] ซึ่งมีกระบวนการผลิตเป็นชิ้นเดินอันดับต่อไปนี้

ขั้นตอนที่ 1 การทำเหมือง (รูปที่ 1(ก)) การ เครื่องแปร (รูปที่ 1(ข)) และการล้างลึกเรือนเดินเบ้าที่ได้จาก การจุ๊ปปุ๊ ซึ่งผ่านการทำภาคกลางและทำให้เงา (รูปที่ 1(ค))

ขั้นตอนที่ 2 ทำการคัดและแยกขนาดเดินเบ้า (รูปที่ 1(ง)) เป็นการนําเดินเบ้าที่แตกกิ้นอย่างให้มี ขนาดเล็กและทำการแยกขนาดโดยละเอียด

ขั้นตอนที่ 3 บรรจุเดินเบ้า เรือนเติมที่ผ่านกระบวนการแยกขนาดจะถูกคัดลว้ําพื้นก็ให้ไปในที่ไข่ เพื่อรองจุดน้ําโดยที่ใช้เพื่อที่ได้จากเดินเบ้าเพื่อปองกันละลายทางอากาศ (รูปที่ 1(จ))
2) เล้าชนอ้อยจากจังหวัดสุพรรณบุรี มีลักษณะสีต้องข้างเรียบและมีน้ำหนักเบา เล้าดังกล่าวเป็นผลผลิตจากโรงงานน้ำตาลที่ใช้น้ำอ้อยเป็นเชื้อเพลิงและนำไปใช้ในกระบวนการทำน้ำตาล งานวิจัยนี้นำเล้าชนอ้อยทั้งที่เป็นเก้าหนักและเก้าเบามาศึกษา โดยมีกระบวนการผลิตตามขั้นตอนดังต่อไปนี้

ขั้นตอนที่ 1 นำเล้าอ้อยที่ได้จากโรงงานผลิตน้ำตาลมาตัดให้มีขนาดเล็กลงและผสมรวมกับเกลือหรือใยที่เย็นขาดผู้มีไม่เกิน 150 มม. (ขั้นตอน 2(ก))

ขั้นตอนที่ 2 นำส่วนผสมเข้าสู่เตาตามวิธีเผาเป็นแบบกึ่งลอยตัว โดยอุณหภูมิของการเผาอยู่ระหว่าง 1,000 - 1,300 ºC เป็นเวลา 5 วินาที (ขั้นตอน 2(ข))

ขั้นตอนที่ 3 เมื่อผ่านกระบวนแาวาสีรีจแล้วจะได้ เล้าหนัก (Bottom ash) และเล้าเบา (Fly ash) ในสัดส่วนร้อยละ 80 และ 20 ตามลำดับ โดยแต่เบียนนั้นจะต้องใช้ละอองน้ำช่วยในการจับมูละควรจะตกลงสู่ส่วนล่างของเตา (ขั้นตอน 2(ค))

3) หินผุน นำมาจากโรงงานหิน ดบหลุม พระนคร อ้านปลอมพระเกียรติ จังหวัดสระบุรี จากการสังเกตด้วยพวกน้ำมันฯลฯที่มีลักษณะสีเทา

4) ผู้เชี่ยวชาญ ใช้บุ้นเชื่อมเตอร์ปอร์ตแลนด์ประเภทที่ 1

5) นำ ใช้ปั้นประเภท
(ก) น้ำชาเป็นผลผลิตที่เกิดขึ้น แยกแยะกันไม่ได้ในสิ่งกลวิ่งของถัง บริมาณร้อยละ 85 และแยกแยะได้ร้อยละ 15

(ข) น้ำสาบแหล่งข้อมูลเฉพาะ เฉพาะ

(ค) เมื่อผ่านเครื่องแล้วจะได้ เล้าหมักและเต้าบาร้อยละ 80 และ 20 ตามลำดับ

รูปที่ 2 ขั้นตอนของการได้มาซึ่งน้ำชา

2.2 วิธีการขึ้นรูปคอนกรีตผล

2.2.1 สัดส่วนผสมในการผลิตคอนกรีตผล
สัดส่วนผสมของคอนกรีตผลแสดงในตารางที่ 1

ตารางที่ 1 สัดส่วนผสมของวัสดุต่างๆ ในการผลิตคอนกรีตผลกรณีไม่รับบ้านหมัก

<table>
<thead>
<tr>
<th>วัสดุ</th>
<th>แรดรามา (ร้อยละโดยน้ำหนัก)</th>
<th>เล้าชาธนย (ร้อยละโดยน้ำหนัก)</th>
</tr>
</thead>
<tbody>
<tr>
<td>บุญเซ็นเหนือ (กก.)</td>
<td>326 326 326 326 326</td>
<td>326 326 326 326 326</td>
</tr>
<tr>
<td>นาบะระป (กก.)</td>
<td>173 187 192 206</td>
<td>179 185 198</td>
</tr>
<tr>
<td>ฟันฝัน (กก.)</td>
<td>1.745 1.545 1.420 1.276</td>
<td>1.501 1.357 1.206</td>
</tr>
<tr>
<td>แรดรามา (กก.)</td>
<td>0 175 262 349</td>
<td>0 0 0</td>
</tr>
<tr>
<td>เล้าชาธนย (กก.)</td>
<td>0 0 0 0</td>
<td>174 262 349</td>
</tr>
</tbody>
</table>
2.2.2 การขึ้นรูปคอนกรีตเลือก
ก่อนการผสมวัสดุความเห็นทุกชนิดจะนำมาตกแต่งให้แข็งแกร่งประมาณ 1 ชั่วโมง เพื่อควบคุมปริมาณน้ำที่จะใช้ผสมให้ถูกต้องมากที่สุด
วิธีการผสม น้ำหนักผู่ เครื่องบอย หรือลำเลียงอ้อยที่ชั่งน้ำหนักตามอัตราส่วนเท่าที่พันผู่ ระหว่าง 0.10, 15 และ 20 โดยน้ำหนักลงผสมในเครื่องผสมประมาณ 1 นานที่แล้วจึงเติมผู่ด้วยมันดินผสมในเครื่องผสมประมาณ 2 นานที่ เมื่อส่วนผสมเข้ากันเติมเต็มบอย ปล่อยให้เครื่อง 만들องค์ลักษณะผสมประมาณ 2 นานที่แล้วลำเลียงร่างเครื่องอัดคอนกรีตเลือกเพื่อทำการขึ้นรูปด่อไป ดังแสดงในรูปที่ 3

รูปที่ 3 การลำเลียงวัสดุความผสมในเครื่องผสม

2.3 รายละเอียดวิธีการทดสอบ

2.3.1 องค์ประกอบทางเคมีและคุณสมบัติทางกายภาพ
ทดสอบองค์ประกอบทางเคมีด้วยเทคนิค XRF และคุณสมบัติทางกายภาพของแวดินเบ่าและเท้าชานอ้อย

2.3.2 การทดสอบคุณสมบัติทางกายภาพของวัสดุรวม
การทดสอบองค์ประกอบทางกายภาพของหินผูแวดินเบ่าและเท้าชานอ้อยประกอบด้วยการหาค่าความกว้างจากวัสดุทดสอบของวัสดุรวมรายละเอียดการทดสอบดังต่อไปนี้
1. ความกว้างจากของแวดินเบ้าและเท้าชานอ้อยตามมาตรฐาน ASTM C 128 [5]
2. ตัดลำเลียงกล่องหินผู้แวดินเบ้าและเท้า
ชานออยเป็นไปตามมาตรฐาน mog. 566-2528 [6]

2.3.3 คุณสมบัติทางกายภาพและทางกลของคอนกรีตเลือก
2.3.4 การทดสอบคุณสมบัติความคงทนของคอนกรีตเลือก
โดยทำการทดสอบความทนต่อการกรดของกรดไฮโดรคลอไรด์ (HCl) กรดนิโคทิน (HNO₃), กรดแคทอล (CH₃COOH) และกรดซิลิคัต (H₂SO₄) ความเป็นกรดต่าง (pH) เท่ากับ 1.0 โดยเขย่าคอนกรีตเลือกในสารละลายเป็นระยะเวลา 5, 10, 28, 60 และ 90 วันตามลำดับ

3. ผลการทดสอบและวิเคราะห์ผล
3.1 องค์ประกอบทางค่านิยมและคุณสมบัติทางกายภาพของเรดินเน่และเขานาอัง
จากตารางที่ 2 พบว่าสัดส่วนของออกไซด์ (SiO₂) เป็นองค์ประกอบหลักของเรดินเน่และเขานาอัง ในขณะที่ส่วนสูงสุดสำหรับเนื้อจากการแตกของเรดินเน่และเขานาอังมีค่าเท่ากับ 7 และ 28 วัน ได้ผ่านกระบวนการเครื่องย่อยสลายทั้งความแข็งและปริมาณคาร์บอนไดออกไซด์ออกของวัสดุที่อุณหภูมิ 1,000 - 1,300 °C ดังนั้น เมื่อนำมาทดสอบหาการสูญเสียน้ำหนักเนื้อจาก การทำให้ไฟสีเทาทดสอบที่อุณหภูมิ 900 - 1,000 °C ซึ่งเป็นอุณหภูมิที่ต่ำกว่าการทำให้เรดินเน่และคาร์บอนออกซิเจนหนึ่งที่ถูกย่นออกมา แต่ในทางตรงกันข้าม เรดินเน่มีค่าการสูญเสียน้ำหนักที่สูงกว่าเขานาอัง ทั้งนี้จะมาจากจากการที่เรดินเน่มีปริมาณคาร์บอนออกซิเจนอยู่หรือมีสารที่ละลายด้วยเมื่อทำการทำทดสอบที่อุณหภูมิสูง ส่วนค่าชินกัลในแบบที่ใช้เรดินเน่ที่อายุ 7 และ 28 วัน มีค่าโดยเฉลี่ย 54.0 และ 67.3 ในการที่ใช้เขานาอังมีค่าโดยเฉลี่ย 52.7 และ 52.6 ตามลำดับ ซึ่งนับเป็นค่าที่แตกต่าง เมื่อเปรียบเทียบกับชินกัลตามมาตรฐาน ASTM C 618 [10] ดังนั้นแนวทางการใช้ชินกัลเป็นไปได้เพียงอย่างเดียว หากไม่มีการปรับปรุงคุณสมบัติเพิ่มเติมคือ การนำไปใช้เป็นมวลรวมในการผลิตคอนกรีตเลือกชนิดไม่รับน้ำหนัก

ตารางที่ 2 องค์ประกอบทางค่านิยมและคุณสมบัติทางกายภาพของเรดินเน่และเขanan

<table>
<thead>
<tr>
<th>องค์ประกอบทางค่านิยม (ร้อยละ)</th>
<th>เรดินเน่</th>
<th>เขานาอัง</th>
</tr>
</thead>
<tbody>
<tr>
<td>ซิลิคอนออกไซด์ (SiO₂)</td>
<td>57.3</td>
<td>88.6</td>
</tr>
<tr>
<td>อะลูมิเนียมออกไซด์ (Al₂O₃)</td>
<td>13.1</td>
<td>3.8</td>
</tr>
<tr>
<td>ไพรอสฟีตออกไซด์ (Fe₂O₃)</td>
<td>6.1</td>
<td>2.1</td>
</tr>
<tr>
<td>เลกาซิโอมิทอิกอซิด (CaO)</td>
<td>0.4</td>
<td>3.0</td>
</tr>
<tr>
<td>แมกเนเซียมออกไซด์ (MgO)</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>โพแท[word not visible]ออกไซด์ (K₂O)</td>
<td>1.6</td>
<td>2.3</td>
</tr>
<tr>
<td>ซิลิคิโอมิทอิกอซิด (Na₂O)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ซิลิเคิโอมิทอิกอซิด (SO₃)</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>องค์ประกอบทางกายภาพ (ร้อยละ)</th>
<th>เรดินเน่</th>
<th>เขานาอัง</th>
</tr>
</thead>
<tbody>
<tr>
<td>การสูญเสียน้ำหนักเนื้อจากการเผาไหม้ (LOI)</td>
<td>20.1</td>
<td>0.2</td>
</tr>
<tr>
<td>ปริมาณความชื้น (ร้อยละ)</td>
<td>6.2</td>
<td>5.5</td>
</tr>
<tr>
<td>ความละเอียด (ด้านบนแดงเบอร์ 325)</td>
<td>40.5</td>
<td>66.1</td>
</tr>
<tr>
<td>ตัวแทนที่มีค่าเทียบเท่ากับเครื่องมือความคุม ที่อายุ 7 วัน (ร้อยละ)</td>
<td>54.0</td>
<td>52.7</td>
</tr>
<tr>
<td>ที่อายุ 28 วัน (ร้อยละ)</td>
<td>67.3</td>
<td>52.6</td>
</tr>
<tr>
<td>ความต้องการน้ำ (ร้อยละ)</td>
<td>145</td>
<td>111</td>
</tr>
<tr>
<td>ความ grayscale</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>ค่าความละเอียดผ่านตะแกรงเบอร์ 200 (ร้อยละ)</td>
<td>73.8</td>
<td>40.1</td>
</tr>
<tr>
<td>ค่าโขดผลิตภัณฑ์ (F.M.)</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
3.2 คุณสมบัติทางกายภาพของคอนกรีตสลัก

3.2.1 หน่วยนำหนัก

รูปที่ 5 แสดงค่าหน่วยนำหนักของคอนกรีตสลัก บั้วที่ใช้หินผุเป็นมวลรวมทั้งหมด คอนกรีตสลักผสม เรือนิภัยและผสมเล่านิภัยในอัตราส่วนการแทนที่ในหินผุรายละ 10, 15 และ 20 โดยหนัก ตามลวดเป็น แบบนี้การ مقابلของหน่วยนำหนักคอนกรีตสลัก ผสมเรือนิภัยและบ้านนิภัยมีทิศทางเดียวกันกับลวดเป็น เมื่อทำการแทนที่หินผุกระเป๋าควรมีแนวโน้มเจริญยิ่ง越多ไปที่หินผุใบรายละ 10, 15 และ 20 ทำให้หนัก ตามลวดเป็น แบบนี้การแต่งส่วนหน่วยนิภัยผสมเลานิภัยที่มีผลให้ ความหนาแน่นของคอนกรีตสลักลดลง และมีค่าลดลง มากขึ้น เมื่อมีการส่วนของการแทนที่เพิ่มขึ้นตามลวดเป็น โดยจากรูปที่ 5 จะเห็นว่าเมื่อทำการแทนที่เรือนิภัยใน หินผุรายละ 20 ทำให้หนักของคอนกรีตสลักลดลง เเก่บประมาณเสียบบังคับผสมเลานิภัยที่ผุระบอบอย่างเดียว ซึ่งที่ อัตราส่วนการแทนที่ต่ำกว่านี้ทำให้คอนกรีตสลักผสม เลานิภัยมีหนักใหม่ลดลงในอัตราส่วนเกิดเพียงกับ

ประเด็นหนังที่นำส่งเกี่ยวกับการลดของค่า หน่วยนำหนักของคอนกรีตสลักผสมเรือนิภัยและบ้าน นิภัยคือ ที่อัตราส่วนการแทนที่จริงและ 10 หน่วยนำ หนักของบ้านผสมเลานิภัยมีความลดลงมากกว่าที่
ผสมเรดินแบงหรือมีค่าแตกต่างกันอยู่ที่ประมาณร้อยละ 7.62 ในขณะที่เมื่อการแทนที่เพิ่มขึ้นเป็นร้อยละ 15 และ 20 ค่าความต่างของหน่วยน้ำหนักกลับลดลงเหลือเพียงแค่ร้อยละ 2.16 และ 0.35 ดังแสดงในรูปที่ 6 ทั้งนี้เพราะในช่วงของอัตราส่วนการแทนที่ของเรดินแบงในหินผุร้อยละ 10 อนุภาคของเรดินแบงสามารถเดินแทรกเข้าไปภายในข้อความระหว่างเม็ดหินผุได้มากกว่า ในขณะที่กรณีของ เก่าขนานอย่างจะเติมแทรกเข้าไปได้เพียงเล็กน้อย ดังนั้น พื้นที่ช่องว่างภายในแบ็กทั้งสองประเภทจึงแตกต่างกันโดย ครอบคลุมต่อกลับผสมเก่าขนานอย่างจะมีพื้นที่ภายในช่องว่างมากกว่าและจะส่งผลต่อความทนทานแน่นหรือหน่วยน้ำหนักที่ลดลงมากกว่าตามไปด้วย [11]

![Graph showing the effect of coal content on the properties of coals.](image_url)
3.2.2 ปริมาณความชื้นและการดูดซึมผ่าน
จากผลการทดลองพบว่าปริมาณความชื้นและการดูดซึมผ่านของคอนกรีตบล็อกผสมแปรรูปฯ ตั้งแต่เริ่มในวันที่ 7 พบว่าปริมาณความชื้นในก้อนคอนกรีตบล็อกไม่แตกต่างจากบล็อกปกติที่ผสมเฉพาะผืนผู้ในอัตราส่วนการแทนที่ของแปรรูปฯในหินผุณที่ก่อสร้าง 10 แต่เมื่อเพิ่มอัตราส่วนการแทนที่เป็นร้อยละ 15 และ 20 พบการลดลงของความชื้นภายในก้อนคอนกรีตบล็อก ทั้งนี้เนื่องจากมูอาศัยของแปรรูปฯอาจจะลดลงน้อยที่ใช้ในการผสมเข้าไปครองอยู่ในช่วงระหว่างรองภูเขา อีกนิยมการ

เนื่องจากผลจากเริ่มของปฏิกิริยาเสมือนในแปรรูปฯที่ต้องใช้แสงเล็กน้อยซึ่งมีผลให้เกิดกิจกรรมการเกิดการบล็อกให้มากขึ้น [12]

เมื่อนำคอนกรีตบล็อกมาทดสอบหาค่าการดูดซึมน้ำพบการเพิ่มขึ้นของความสามารถต่อกว่าปริมาณของแปรรูปฯที่เพิ่มขึ้น เนื่องจากมูอาศัยและเยื้องของแปรรูปฯไม่ส่งในการดูดซึมน้ำได้ดีและค่าการดูดซึมน้ำที่ปรากฏชัดให้เห็นถึงระดับความหยุดของคอนกรีตบล็อกที่เพิ่มขึ้นเมื่อปริมาณแปรรูปฯเพิ่มขึ้น

![Diagram showing the relationship between water transport and concrete block samples](image)

**กรุ๊ปที่ 7 ค่าการดูดซึมน้ำและปริมาณความชื้นของคอนกรีตบล็อกผสมแปรรูปฯ

จากรูปที่ 8 เมื่อพิจารณาค่าความชื้นของคอนกรีตบล็อกผสมแปรรูปฯพบว่าเพิ่มขึ้นที่รองภูเขาอ่อนในหินผุณที่ร้อยละ 10 โดยถ้าน้ำมันมีผลทำให้ความชื้นภายในก้อนคอนกรีตบล็อกลดลงจากคอนกรีตบล็อกปกติที่มีเฉพาะผืนผู้ ซึ่งหมายถึงคอนกรีตบล็อกอ่อนสามารถเก็บน้ำเข้าไปภายนอกกิจกรรมวัสดุกิจกรรมยามก่อสร้าง แต่เมื่อเพิ่มอัตราส่วนการแทนที่เป็นร้อยละ 15 ไปจนถึงร้อยละ 20 ค่าความชื้นมีแนวโน้มเพิ่มขึ้น ซึ่งแสดงให้เห็นว่าเมื่อปริมาณของเลือดอ่อนในก้อนคอนกรีตบล็อกเพิ่มขึ้นเกิดจุดหยุดเองการอัตราน้ำคอนกรีตบล็อกอาจทำให้เกิดการแตกที่ของอนุภาคเลือดอ่อน แล้วปล่อยความชื้นคงต่อกว่าสวน นอกจากนี้ภายในอนุภาคจะมีผลคงพลังที่มีค่าความชื้นเพิ่มขึ้น แต่อย่างไรก็ตาม เมื่อพิจารณาจากค่าการดูดซึมน้ำได้ผลที่เพิ่มขึ้นแสดงให้เห็นว่า ความพรุนของเลือดผสมเลือดอ่อนมีค่าเพิ่มขึ้น และยังพบว่าระดับความยืดของการทดสอบจริงทำให้เพิ่มความสามารถในการก่อเก็บความชื้นได้
3.2.3 ความสามารถในการดูดซับเสียง

คุณสมบัติของคอนกรีตบล็อกที่เกี่ยวข้องกับการดูดซับเสียงสามารถพิจารณาได้จากค่าสัมประสิทธิ์ของการดูดซับเสียงที่ระดับความถี่ต่างๆ ซึ่งเป็นส่วนหนึ่งของระดับพลังงานเสียงที่ดักระบายสู่ส่วนที่ติดต่ออย่างอิสระและดูดซับไปภายใน โดยที่การทดสอบภายในห้องทดสอบชนิด Reverberation room ตามมาตรฐาน ASTM C 423 [13]

ตัวแปรในรูปที่ 9 พบว่าค่าสัมประสิทธิ์เปลี่ยนแปลงค่าสัมประสิทธิ์การดูดซับเสียงของคอนกรีตบล็อกเรือนิ่ม หรือเก่าที่มีส่วนประกอบที่เกี่ยวข้องกับคอนกรีตบล็อกปากน้ำ คอนกรีตบล็อกมีค่าสัมประสิทธิ์การดูดซับเสียงจากระดับความถี่ของเสียงต่ำสุดที่การทดสอบ (125 เฮิร์ตซ์) เพิ่มขึ้นถึงระดับความถี่ 160 เฮิร์ตซ์ จากนั้นจะลดลงจนถึงความถี่ 250 เฮิร์ตซ์ ต่อจากนั้นจะมีค่าเพิ่มขึ้นอย่างต่อเนื่องจนถึงที่ความถี่ 800 เฮิร์ตซ์ ที่ค่าสัมประสิทธิ์ของการดูดซับเสียงเท่ากับ 0.19 ต่อจากนั้นจะลดลงตามลำดับจนถึงที่ความถี่ 4,000 เฮิร์ตซ์ อ่านแสดงให้เห็นว่าสุดยอดค่าสัมประสิทธิ์ของคอนกรีตบล็อกมีการตอบสนองต่อพลังงานเสียงที่ระดับตั้งแต่ความถี่ต่ำที่สุด ในการศึกษาลักษณะการกระจายของอนุภาคที่สี่สิบสอง รวมทั้งช่วงว่างที่บริเวณผิวตัวกัน ซึ่งหากเปลี่ยนภูมิภาคที่ผิวตัวมีสิ่งแวดล้อมผลดีของทางเสียง (Particle-sound compatibility) ก็จะมีความสามารถในการสับและลดพลังงานเสียงได้ เนื่องจากเสียงจากรูปที่ 9 การคำนวณค่าสัมประสิทธิ์ของการดูดซับเสียงที่ระดับความถี่ต่ำสุดที่การทดสอบ ได้เห็นว่าค่าสัมประสิทธิ์การดูดซับเสียงมีค่าเท่ากับส่วนผสมของเสียงที่ต่ำสุด ตั้งแต่ 0.19 นั่นหมายถึงการกระจายของอนุภาคที่สี่สิบสองและผลดีของทางเสียงได้เพียงร้อยละ ของความถี่ที่สูงสุดของเสียงที่ต่ำสุด ดังนั้น หากอนุภาคของวัสดุที่เป็นส่วนประกอบของบล็อก โดยเฉลี่ยที่ปริมาณดิบด้านล่างมีอนุภาคขนาดใหญ่กว่าเสียงมากกว่าเสียงจะทำให้ที่สุดเกิดขึ้นได้มาก แต่ในทางตรงกันข้ามหากเสียงกระจายอยู่ในยุคที่มีขนาดเสียงเกินกว่าความยาวเสียง การดูดเสียงพลังงานเสียงก็จะลดลง ซึ่งจากหลักการนี้ทำให้สินธุ์รุ่นราวบล็อกคอนกรีตมีอนุภาคขนาดใหญ่กว่าความยาวเสียงเสียงที่ทำให้รู้สึกบังคับ ปัจจัยอันเป็นสาเหตุหนึ่งคือ ความรุ่นของบล็อกซึ่งสามารถอธิบายได้ดังรูปที่ 10 โดยที่ทำให้มีความรุ่นมากจะทำให้โอกาสที่สับเสียงกับต่ำลงได้ มีน้อยลง เนื่องจากเสียงมีการสะท้อนกลับไปด้านมากภายในโครงสร้างบล็อกจนพลังงานลดลงอย่างมากแล้วจึง
สะดวกกลับออกมาหน่อย (เนื่องจากใช้ได้กับบริเวณที่มีมิว
แห่ง)
สำหรับผลการศึกษาด้านอิทธิพลของแนวโน้ม
พบว่า เมื่อทำการแทนที่พื้นผืนด้วยแนวโน้มที่ร้อยละ 10
ทำให้ตัวแสปริยณ์การดูดซับเสียงของคอนกรีตเลื่อมมี
ค่าเพิ่มขึ้น และมาจากแนวโน้มการดูดซับเสียง ทันทีเนื่องมา
จากการตัดความหนาของเส้นมีค่าเพิ่มขึ้น ดังนั้น จึงมี
โอกาสที่พื้นผืนเสื่อมจะถูกถ่ายทอดผ่านตัวกลวงเข้าไป
ทั้งหมดและพลังงานลดลงพลังงานที่สะท้อนออกมาจึงมีค่า
มากขึ้น ในขณะที่การแทนที่พื้นผืนด้วยแก้วชานออยybridและ

20 โดยนาหนัก กลับมีผลทำให้ลดตัวแสปริยณ์การดูด
ซับเสียงลง แต่ยังคงให้แนวโน้มของการเปลี่ยนแปลงเช่น
เดียวกับปริยณ์ปกติ ซึ่งแสดงให้เห็นแนวโน้มว่า เมื่อส่วน
ประกายมาระหว่างเก่าของเส้นอย่างเป็นต้นผืน การ
เปลี่ยนแปลงตัวแสปริยณ์นี้ขึ้นอยู่กับบริเวณดังกล่าว
ส่วนผืนที่เกิดขึ้นกับตัวแสปริยณ์การดูดซับเสียง น่าจะ
เกิดจากการกระแทกในระหว่างการซิรูป แล้วทำให้
อนุภาคของแก้วชานออยybridและเยอเดสเลื่อง จึงอาจส่งผล
ให้ความรุนแรงของผืนผืนเลื่อมลดลงและทำให้คลื่นเสียง
สะดวกออกไปได้มากหรือมีการดูดซับเสียงน้อยลง

รูปที่ 9 คุณสมบัติในการดูดซับเสียงของคอนกรีตเลื่อมแนวโน้มแบ่งเป็นหรือแก้วชานออยybrid

รูปที่ 10 ตัวอย่างตัววาร์มแสดงอิทธิพลของความรุนแรงเสียดที่มีต่อการสะท้อนของคลื่นเสียง
3.2.4 การนำความร้อน

สำหรับผลการทดสอบการนำความร้อนของคอนกรีตเม็ดละเอียดต่างๆ แสดงในรูปที่ 11 พบว่าการนำความร้อนของคอนกรีตเม็ดละเอียดที่มีเส้นและผสมกันอย่างมีค่าต่ำกว่าคอนกรีตเม็ดละเอียด และมีค่าลดลงตามลำดับเมื่ออยู่ขนาดกำลังที่ของวัสดุที่สอง มีค่าเพิ่มขึ้นโดยคอนกรีตเม็ดละเอียดที่มีค่าเพื่อมื่อง 1.124 วัดต่อหน่วยเวลในขณะที่เมื่อใช้เวตนิดหนึ่งยังเห็นชัดเจนอยู่ที่ 20 มีค่าการนำความร้อนอยู่ที่ 0.384 และ 0.579 วัดต่อหน่วยเวล ในขณะที่ชั้นบ่อชั้นที่สอง ความร้อนจะลดลงที่ผ่านที่กว้างในเวลาผสมกันอยู่กว่า จะเห็นว่ารูปที่ของมีคุณสมบัติความเป็นแบบอยู่ในด้าน จึงส่งผลให้การนำความร้อนโดยรวมของคอนกรีตเม็ดละเอียดมีค่าลดลง

3.2.5 ค่าความรุน

เมื่อพิจารณาค่าความรุนของคอนกรีตเม็ดละเอียด เน้นเบบและเจาะลึกออยล์เรียบร้อยถึงเบบกับคอนกรีตเม็ดละเอียด ปกติตัวแสดงในรูปที่ 12 พบว่าเป็นผลต่อเวลของแรงดันแบบมีค่าความรุนเพิ่มขึ้นตามอัตราส่วนการแทนที่ของเจาะลึกแบบเกี่ยวข้อง เนื่องจากเวตนิดแบบเป็นรูปที่ 20 ตันนี้ ส่วนผสมของคอนกรีตเม็ดละเอียดที่มีเวตนิดแบบเพิ่มขึ้นเร็จรัดทำให้โครงสร้างภายในมีความรุนเพิ่มขึ้นตามลำดับ แต่การณ์จากการขับดันในระหว่างกระบวนการขึ้นรูปกับ การแตกหักของโครงสร้างบูรพาได้เป็นเหตุความรุนโดยรวมของเพิ่มขึ้น ค่าความรุนโดยเฉลี่ยเพิ่มขึ้นจากจริงที่ 17.03 เป็นร้อยละ 24.74, 30.07 และ 33.67 สำหรับ คอนกรีตเม็ดละเอียดที่มีเวตนิดแบบร้อยละ 10, 15 และ 20 โดยนาหนักของเจาะลึกที่ผ่านที่กว้างในเวลาผสมกันอยู่ที่ร้อยละ 15 และ 20 โดยนาหนัก ตามลำดับ ในขณะที่การใช้ลึกเจาะลึกผสม คอนกรีตเม็ดละเอียดผ่านพิจารณาให้คอนกรีตเม็ดละเอียดความรุนเพิ่มขึ้นตามเดียวกัน และยังสูงกว่าคอนกรีตเม็ดละเอียดเบิน เม็ดย่อยในกรณีแทนที่ผ่านผ่านบางส่วนเจาะลึกผ่านที่ร้อยละ 15 และ 20 โดยนาหนัก
3.2.6 กำลังอัดของบล็อก
3.2.6.1 กำลังอัดของบล็อกผสมแกรนิเน

เมื่อพิจารณาการพัฒนากำลังอัดของคอนกรีตบล็อกผสมแกรนิเนตามแบบแสดงในรูปที่ 13 พบข้อที่จริงที่ว่า อัตราการพัฒนากำลังอัดขั้นต่ำที่อายุ 91 วัน มีค่าต่ำมากและกำลังอัดที่ได้มาจากขั้นต่ำอาจได้จากการอัดรัวของบล็อกในกระบวนการขึ้นรูป [14] ส่วนค่ากำลังอัดที่ได้จากปฏิทินวิธี เครื่องที่เกิดขึ้นจะมีค่อนข้างต่ำ เนื่องจากในส่วนผสมของคอนกรีตบล็อกผสมแปรรูปในบังคับขั้นต่ำมาก ซึ่งจากผลการทดสอบค่ากำลังอัดของคอนกรีตบล็อกมาตรฐานที่อายุ 28 วัน มีค่าเพียง 41.3 กก./ซม.² ในขณะที่กำลังอัดของคอนกรีตบล็อกที่อายุ 91 วัน มีค่าเพียง 44.9 กก./ซม.²

เมื่อเปรียบเทียบการพัฒนากำลังอัดของคอนกรีตบล็อกผสมแกรนิเนว่า เมื่ออัตราส่วนการแทนที่ของแกรนิเนมากขึ้นมีผลต่อค่าการพัฒนากำลังของคอนกรีตบล็อกที่ลดต่ำลงตามลำดับ โดยค่ากำลังอัดที่อายุ 28 วันคอนกรีตบล็อกผสมแกรนิเนมีกำลังอัดเพียงร้อยละ 62.4, 19.7 และ 19.6 ของกำลังคอนกรีตบล็อกปกติที่อัตราส่วนการแทนที่หมุ่นสูงกว่าเว้นแต่กำลังอัดเท่ากับอัตราส่วน 10, 15 และ 20 โดยทำหน้าที่ ตามลำดับ นอกจากนั้นเมื่อเปรียบเทียบกับค่ากำลังอัดตามเกณฑ์มาตรฐานผลิตภัณฑ์คุณภาพกรมที่กําหนดค่ากำลังอัดไม่tearDownกว่า 25.0 กก./ซม.² [4] จะมีเพียงวัตถุประสงค์ที่อัตราส่วนเว้นแต่การ尖ยะ 10 และอายุการบ่ม 28 วันเท่านั้น ที่มีกำลังอัดเกินกว่ำค่าต่ำสุดแล้ว
3.2.6.2 กำลังอัตราของบล็อกแกรมาน้ำدان้อย

เช่นเดียวกับแนวโน้มของการพัฒนากำลังของคอนกรีตในบล็อกแกรมาน้ำดาน้อย การใช้เกล้าฮินาอ้ายมา แทนที่ในหินผูมีผลทำให้การพัฒนากำลังของคอนกรีต บล็อกผ่ากว่าคอนกรีตบล็อกปกติถ้าแสดงในรูปที่ 14 กล่าว คือ เมื่อพิจารณาค่ากำลังของคอนกรีตในบล็อกที่อายุ 28 วัน พบว่ากำลังของบล็อกที่ดีมีค่าร้อยละ 66.8, 61.2 และ 61.2 เมื่อใช้เกล้าฮินาอ้ายมาในหินผูร้อยละ 10, 15 และ 20 ตามลำดับ แสดงว่า ค่าร้อยละของกำลังอัตราที่อายุ 28 วัน มีค่าใกล้เคียงกันอย่างมีนัยสำคัญ ความไม่แตกต่างดังกล่าว น่าจะเนื่องมาจากในขณะที่ขึ้นรูปบล็อก คำกำลังอัตราของ เครื่องขึ้นรูปมีผลไปทำลายอนุภาคของเกล้าฮินาอ้ายให้เล็ก ลง จนได้ความแทนเน้นของโครงสร้างภายในใกล้เคียงกัน มาก นอกจากนี้ในเมื่อใช้ริบกสัญญาณตามมาตรฐานของ ผลิตภัณฑ์ต้องสามารถเป็นแนบแท้จะสามารถใช้เกล้าฮินา อ้ายมาในหินผูได้ถึงร้อยละ 20 โดยน้ำหนัก

รูปที่ 13 คำกำลังอัตราที่เสื่อมของคอนกรีตบล็อกแกรมาน้ำดาน้อย
3.2.7 ความค่อนข้างต่อการตกกร่อนเนื่องจากกรด ผลการทดสอบความสามารถในการดำรงชีวิตการ ตกกร่อนเนื่องจากการตกของคอนกรีตเสนอเลือกที่ผสมเว้นในปา และเก็บนานอยู่ในอิฐสำหรับการแทนที่ร้อยละ 0, 10, 15 และ 20 โดยน้ำหมักในรูปที่ 15 โดยใน การทดสอบจะเข้าข้อความกิจวัตรเลือกจำนวน 2 ประเภท คือ กระดาษแกะประกอบด้วย กรดซิฟรู (รุ่นที่ 15(ก) และ 15(ฮ)) กรดไนเตรต (รุ่นที่ 15(ฮ) และ 15(ป)) กรดไนเตรต (รุ่นที่ 15(ฮ) และ 15(ป)) มีผลเว้นในปา และเก็บนานอยู่ในอิฐสำหรับการแทนที่พิมพ์ เพิ่มมากขึ้น มีความที่ต่อการตกกร่อนของกรดต่ำลง ถึงแม้ว่าวัดเว้นในปา และเก็บนานอยู่จะมีปริมาณซีටคอน ไตรออกไซด์ (SiO₃) ซึ่ง โดยเว้นในปาและเก็บนานอยู่มี ปริมาณซีටคอนไตรออกไซด์ (SiO₃) ร้อยละเท่ากับ 57.3 และ 88.6 ตามลำดับ) และสามารถทำปฏิกิริยาเกิดแคลเซียม ไตรออกไซด์ (Ca(OH)₂) ได้ แต่จะเห็นว่า ความสามารถในการทำปฏิกิริยาเชิงของวัสดุที่ต้องการpheric.ip ค่าค่ามากโดยพิจารณาจากค่าค่าน้ำของเว้นในปริมาณที่อยู่ 7 และ 28 วัน มีค่าร้อยละ 54.0 และ 67.3 ในขณะที่เก่า สนธิมากว่าค่าร้อยละ 52.7 และ 52.6 ตามลำดับ ประกอบ กับความพุรุษของคอนกรีตเลือก จะเพิ่มขึ้นเมื่อผสมเว้น ดินบาและเก็บนานอยู่ในอิฐที่สูงขึ้น (รุ่นที่ 12) ซึ่งมี ผลทำให้ไตรออกไซด์สามารถย้ายเข้าไปทำปฏิกิริยาได้กับ กรดกรอนได้ดียิ่งขึ้น

เนื่องจากการตกกร่อนโดยสารละลายกรอนเป็น กระบวนการเปลี่ยนแปลงสารประกอบเคลือมใหญ่ ประเภทในคอนกรีตเลือกให้กลายเป็นกลไคเคลือม [15] จะเห็นได้อย่างชัดเจนจากกรานกรอนว่า คำสั่งผู้สนใจ หน้าของคอนกรีตเลือกผสมเว้นในปาและคอนกรีตเลือก ผสมเว้นในอิฐส่วนอื่นที่มาจากปริมาณเพิ่มขึ้นตามอายุของการแทนที่ และมีแนวโน้มเพิ่มขึ้นอีก เมื่อค่าร้อยละของการแทนที่ ผิวหนุ่มผืนด้วยเต้นที่หรือด้วยเก็บนานอยู่เพิ่มสูงขึ้น โดยกรดที่มีการตกกร่อนรุนแรง คือ กรดซิฟรู (CH₃COOH) และกรดที่มีการตกกร่อนน้อยที่สุดคือ กรดซิฟรู (H₂SO₄) เนื่องจากโดยปกติผลิตภัณฑ์ที่ได้ จากการทำปฏิกิริยาของกรดซิฟรู (กรดออก) คือ แคลเซียมออร่าเต็มคุณสมบัติที่จะสลายได้ ดังนั้น เมื่อ แคลเซียมออร่าเต็มสลายได้ทำการทำปฏิกิริยา กลไคกลวลผลที่ได้จากกรานกรอน (กรานเกล) คือแคลเซียม ซีโอ₂นั้นจะมีความสามารถในการละลายเร็วได้ดี เมื่อ แคลเซียมซีโอ₂ถูกละลายได้ให้เร็วจะทำให้เนื่องของผลิตภัณฑ์ ดังกล่าวส่วนใหญ่จะถูกย่อยที่ผิวของคอนกรีตเลือกซึ่งจะ เป็นผลิต เนื่องจากจะทำให้เนื่องของกรอนขับไปทำปฏิกิริยา กับแคลเซียมผืนดัง ผลคือปริมาณการสูญเสียน้ำหนักจะ ลดลงตามไปด้วย

4. สรุปผลการศึกษา

จากการศึกษาของคอนกรีตเลือกกลางชนิดไม่รับบานน้ำ และไม่ความค่อนข้างที่มีขนาด 70 x 190 x 390 มม.³ ซึ่งใช้เว้นในปาและเก็บนานอยู่แทนที่ในพื้นผืนที่ อัตราส่วนร้อยละ 0, 10, 15 และ 20 โดยน้ำหมัก โดย กำหนดอัตราส่วนน้ำต่อกบเป็นตาสิม (w/c) มีค่า 0.53 ถึง 0.64 โดยน้ำหมัก ชื่อนั้นอยู่เกี่ยวกับการรูปสรุปผลได้ดังนี้

1. คุณสมบัติของปลอกองกรีตพื้นผืนผสมเว้นในปา และเก็บนานอยู่พบว่า สิ่งที่พิจารณาเพิ่มขึ้นของเว้นในปา และเก็บนานอยู่แปลงทำให้น้ำหมัก ค่าการน้ำที่ ร่อน คำสั่งประสิทธิการดูซับเสื่อม การพื้นผืนกับและ ความทนต่อการตกกร่อนในสูงขึ้นเนื่องจากสภาพความ เป็นกรอนของคอนกรีตเลือกผสมเว้นผืนด้านอ่อนยิ่งลง

2. คำสั่งประสิทธิการดูซับเสื่อมและปริมาณความ ชื้นของคอนกรีตเลือกพื้นผืนผสมเว้นในปามีสูงกว่า คอนกรีตเลือกปลีที่ผสมเว้นผืนอย่างเดียวกัน

3. เมื่อพิจารณาความค่อนข้างตามมาตรฐาน ผลิตภัณฑ์ที่อุปสรรคเป็นสิ่งที่ส่งผลที่จะสามารถ ใช้เว้นในปาและเก็บนานอยู่แทนที่พื้นผืนได้ร้อยละ 10 และ 20 โดยน้ำหมัก ตามลำดับ
5. Giditikomorphas

6. Othasari A夸大

6. น. วณิชย์ วัฒน์ธวัช ละคะณร, 2545, ผลของแวด

7. น. วณิชย์ วัฒน์ธวัช ละคะณร, 2545, ผลของแวด

8. น. วณิชย์ วัฒน์ธวัช ละคะณร, 2545, ผลของแวด

รูปที่ 15 ค่าการสูญเสียน้ำหนักคอนกรีตถูกลดลงมาเพียงเบาะเนื้อจากกรณีการกระทำซ้ำๆ การแบ่ง กระติกโดยตรงกับ และการกระทำซ้ำๆ