นักศึกษา ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ 1 และ อัษฎา จิรประยุกต์เลิศ 2
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี บางพลัด ทุ่งครุ กรุงเทพฯ 10140

รับเมื่อ 7 มีนาคม 2551 ตอบรับเมื่อ 16 มีนาคม 2552

บทความย่อ
บทความนี้มีจุดประสงค์ที่นำเสนอแนวทางในการลดความผันแปรของค่าความต้านทาน (Magneto-Resistive Resistance; MRR) ของหัวอ่านเขียนสารติดสก์ในกระบวนการขัดละถี่ยด โดยการนี้ได้ต่อยอดศึกษาจากกระบวนการผลิตหัวอ่านเขียนสารติดสก์รุ่นหนึ่ง พบว่าผลได้ทางไฟฟ้าปัจจุบันอยู่ที่ร้อยละ 91.51 ซึ่งต่ำกว่าเป้าหมาย (ร้อยละ 93 ของขึ้นงานที่ทำการตรวจ) และมีผลได้ร่วมอยู่ที่ร้อยละ 84.65 ของขึ้นงานที่ทำการผลิต จากการสำรวจของเสียที่เกิดขึ้น พบว่า ข้อพบของทางไฟฟ้าที่เกิดคือ ความผันแปรของค่าความต้านทานสูง ค่าความต้านทานของผลิตภัณฑ์มีความสัมพันธ์กับค่าความต้านทานจากกระบวนการขัดละถี่ยดมากที่สุด งานวิจัยนี้จึงมุ่งเน้นที่กระบวนการขัดละถี่ยด พบกับค่าคัดค้าน นวัตกรรมการมองกระบวนการ (Cpk) เท่ากับ 0.85 ซึ่งสามารถยืนยันได้ว่ามีความผันแปรของค่าความต้านทานสูง เนื่องจากความผันแปรระหว่างแรงบันดาลของขั้นงาน จากนั้นทำการวิเคราะห์หาสาเหตุโดยการวิเคราะห์ปัจจัยที่มีผลต่อความผันแปรของค่าความต้านทานในกระบวนการขัดละถี่ยดของผ่านแผนภาพก้างปลา และพิสูจน์สาเหตุด้วยการออกแบบทางทดลอง จากผลการทดลองพบว่า วิธีการทดสอบมีผลต่อความผันแปรของค่าความต้านทานอย่างมีนัยสำคัญ เนื่องจากวิธีการทดสอบแบบกระจายแสดงค่าผลดีกว่าการก้อนหัวการขัด โดยหลังจากนั้นทำการทดสอบไป ปรากฏว่าในกระบวนการขัดพบว่า ผลได้โดยเฉลี่ยเพียงอยู่ที่ร้อยละ 91.86 ของขั้นงานที่ทำการตรวจ สงผลกระทบให้มีผลได้ร่วมอยู่ที่ร้อยละ 84.81 ของขั้นงานที่ทำการผลิต และสามารถเพิ่มค่าคัดค้าน Cpk ของค่าความต้านทานจากการกระบวนการขัดละถี่ยดเท่ากับ 1.26

คำสำคัญ : กระบวนการขัด / หัวอ่านเขียนสารติดสก์ / การลดความผันแปร / MRR / กระบวนการขัด

1 นักศึกษา ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์
2 อัษฎา จิรประยุกต์เลิศ ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์
MRR Sigma Reduction in Fine Lapping Process of Slider Fabrication

Kasemsak Chunhaboonyatip 1 and Adsada Jiraprayuklert 2
King Mongkut’s University of Technology Thonburi, Bangmod, Toongkru, Bangkok 10140

Received 7 March 2008; accepted 16 January 2009

Abstract

This article intends to reduce variation of MRR (Magneto-Resistive Resistance) in Fine Lapping Process of Slider Fabrication. In the case study, it was found that the electrical yield of slider fabrication was 91.51%, which does not meet target at 93% of total inspected parts, and the overall yield of slider fabrication was 84.65% of total produced parts. From the study, the major problem was “out-of-specification MRR”, which was mainly contributed from the fine lapping process. The process capability index (Cpk) was 0.85, which indicated that the process had lapping control problem. Next step, the theories of resistance and real lapping process were studied. The factors that impact variation between bar of MRR were defined by cause and effect diagram and experimental design. The several experiments revealed that bar pressing method significantly effects the variation between bar, because the uniform load method can reduce bar twist before lapping. After implementing the new bar pressing method, electrical yield is increased to 91.86% of the total number of inspected parts. The Cpk index is increased to 1.26. Finally, overall yield is increased to 84.81% of the total number of produced parts.

Keywords: Slider fabrication / Variation reduction / MRR / Lapping process

1 Graduated Student, Department of Industrial Engineering, Faculty of Engineering.
2 Lecturer, Department of Industrial Engineering, Faculty of Engineering.
1. บทนนำ

ในการจับอุตสาหกรรมการผลิตฮาร์ดดิสก์ได้พิจารณาอุตสาหกรรมหนึ่งที่มีการแข่งขันสูงที่สุดในเรื่องของคุณภาพและราคาของฮาร์ดดิสก์ เจาะลึกในอนาคตว่ามีการขยายตัวอย่างรวดเร็ว จึงมีความจำเป็นที่องค์การธนาคารเพื่อการยืมทุนและในขณะเดียวกันทำให้การปรับปรุงคุณภาพการผลิตของฮาร์ดดิสก์เพิ่มเติม พร้อมทั้งสร้างความเชื่อมั่นที่มีต่อองค์การให้กับผู้ผลิตโดยการลดจำนวนของเสียที่เกิดจากผลิตภัณฑ์

ปัจจุบันงานวิจัยต่างๆ ที่มีจุดประสงค์ของเสียหรือลดแผนผังเป็นกระบวนการผลิต เช่น งานวิจัย [1-6] นับว่าจะทำให้สามารถทำให้ลดจำนวนที่มีความเสี่ยงต่อปัญจานีสามารถควบคุมได้และไม่สามารถควบคุมได้ แต่มีงานวิจัยใดที่พิจารณาถึงปัญจานีที่ถูกและแยงต่างแต่ยังไม่สามารถวิเคราะห์ในกรณีศึกษาตัวอย่างพบว่า กระบวนการที่เป็นอยู่ในปัจจุบันนั้นได้คำนวณลักษณะตรงตามเป้าหมายหรืออยู่ในระดับที่เหมาะสมอยู่แล้ว แต่ก็ยังไม่สามารถลดความต้านแปรที่เกิดขึ้นในกระบวนการลงได้อีก ในการวิจัยฉบับนี้จึงนำเสนอแนวทางในการวิเคราะห์โดยนำปัจจัยที่ควบคุมได้และถูกผลมาวิเคราะห์และสามารถช่วยลดของเสียได้อย่างเห็นผลชัดเจน

2. วิธีการวิจัย

งานวิจัยที่เริ่มจากการแสวงหาโอกาสในการปรับปรุงจากกระบวนการผลิตทั่วๆไปอุตสาหกรรมฮาร์ดดิสก์ พบว่า ในแต่ละโครงการนั้นที่มีความสูญเสียเกิดขึ้นจากผลิตภัณฑ์ประกอบเป็นจำนวนมากจากกระบวนการผลิตทั่วๆไปอุตสาหกรรมฮาร์ดดิสก์ โครงสร้างของฮาร์ดดิสก์และราคาทั่วๆไปอุตสาหกรรมฮาร์ดดิสก์ซึ่งเป็นส่วนประกอบที่ทำผลการศึกษาในกรณีตัวอย่างนี้ได้แสดงในรูปที่ 1

![รูปที่ 1 โครงสร้างของฮาร์ดดิสก์และภาพที่บ้านฮาร์ดดิสก์](image)

ผลิตภัณฑ์ตัวอย่างที่ใช้ในการศึกษาวิจัยเป็นหัวอานเขียนรูปหนึ่งซึ่งใช้เทคโนโลยีการบันทึกข้อมูลในแนวตั้งที่ให้ผลลัพธ์ที่การเก็บข้อมูลในแต่ละบิตติดต่อกัน โดยหยุดหลักในการเสื่อมรุนด้วยการเป็นรุนรังในเทคโนโลยีใหม่ สาสุกิตี้ในขณะที่ทำการศึกษาและอยู่ในช่วงต้นของวงจรผลิตภัณฑ์ หัวอานเขียนรูปหนึ่งมีปัญหาเรื่องของผลได้โดยเฉลี่ยทางไฟฟ้า (electrical yield) ปัจจุบันอยู่ที่ร้อยละ 91.51 ต้นๆกว่าปีที่ผ่านมา (ร้อยละ 93 ของขั้นงานที่ทำการตรวจสอบ คำนวณหาจากขั้นงานเสียที่ตรวจสอบหัวด้วยชั้นงานตรวจชั้นหลัง) และมีผลได้รวมอยู่ที่ร้อยละ 84.65 ของขั้นงานที่ทำการผลิต จากการสำรวจของเสียที่เกิดขึ้นพบว่ามีข้อบกพร่องทางไฟฟ้าประเภท Magneto-Resistive Resistance (MRR: ค่าความดันทางไฟฟ้า) เน้นที่ด้านหัว นั้นสูงหรือต่ำเกินไปหรือมีความซับซ้อนของค่าความดันทางไฟฟ้า ซึ่งเป็นปัญหาที่ส่งผลกระทบรุนแรงต่อผลได้และลูกค้า ในการวิจัยซึ่งจะวิเคราะห์กระบวนการผลิตหัวอานเขียนฮาร์ดดิสก์ได้นั้นจะต้องเริ่มจากการทำความเข้าใจกับกระบวนการผลิตเสียก่อน ดังรูปที่ 2
รูปที่ 2 แผนผังกระบวนการผลิตหัวฉีดเย็น。

จากรูปที่ 2 แผนผัง fod เตรียมการตัดเป็นบนที่เรียกผ่านกระบวนการทั่วถึงการล้าง และขัดเย็น และกระบวนการอื่น ๆ เพื่อให้ได้สิ่งที่เรียกว่า สไลด์อร์ (slider) หรือหัวฉีดเย็นสารติดตั้ง ค่า MRR เป็นค่าความต้านทานที่เรียกว่าผลลัพธ์จากผ่านกระบวนการขัดหยาบและขัดเย็น เพื่อแสดงถึงความหนาของบริสุทธิ์ที่จะกลายเป็นความยืดหยุ่นของผู้ผลิตภัณฑ์ภายในหัวฉีดเย็นสารติดตั้ง [7, 8] ดังนั้นกระบวนการหลักที่น่าสนใจ คือ กระบวนการของขัดหยาบ (Rough Lapping: RL) และกระบวนการขัดละเอียด (Bar Level Kiss Level: BLKL) ที่ทำหน้าที่ในการควบคุมความยาวของตัวอุปกรณ์ภายในหัวฉีดเย็นสารติดตั้งที่เรียกว่า Stripe Height; SH จากการศึกษาเพิ่มเติมพบว่าค่าความด้านท่านของผลิตภัณฑ์มีความสัมพันธ์กับค่าความด้านท่านจากการกระบวนการขัดละเอียดมากที่สุด เมื่อวิเคราะห์ความสามารถของกระบวนการจากค่าของพิกัด Cpk เท่ากับ 0.85 ดังรูปที่ 3 หมายความว่ามีความผันแปรของค่าความด้านท่านจากการกระบวนการขัดละเอียด ซึ่งผ่านคร่า

ความเบี่ยงเบี่ยงมาตรฐาน (StDev จากรูปที่ 3) ผ่านความเบี่ยงเบี่ยงมาตรฐานของความด้านท่านระหว่างชุดที่ผลิตจากการกระบวนการ (Between) มีค่าอยู่ระหว่างความเบี่ยงเบี่ยงมาตรฐานความด้านท่านระหว่างชุด (Within) ซึ่งสามารถยืนยันได้ว่ามีความแตกต่างของค่าความด้านท่านระหว่างชุดเมื่อการดำเนินงานเพื่อแสดงความแตกต่างของค่าความด้านท่านระหว่างชุดนั้นมีวิธีการดำเนินงานดังนี้

2.1 การวิเคราะห์ระบบการวัด

เริ่มด้วยการเลือกทำการประเมินระบบการวัด เพื่อพิจารณาความผันแปรในระบบการวัดที่เกิดขึ้นและผ่านการวัดที่เกิดขึ้นนั้นสามารถที่จะยอมรับได้หรือไม่ โดยการวัด Quasi Static Test (QST) เป็นเครื่องวัดอินเมติชั่นที่จะให้ผลการวัดน้อยลงในภาคที่เรียบใส่และยืดหยุ่นจนต่ำนั้น จึงไม่พิจารณาไปถึงการพิจารณาที่ทำหน้าที่ในการตรวจ
2.2 การวิเคราะห์สาเหตุของปัญหา
ด้านในการวิเคราะห์สาเหตุที่กล่าวให้เกิดความผันแปรของค่าความต้านทานของงานระหว่างการได้ผลในผลิตที่ทางสายพันธุ์อยู่ด้านนั้นจะใช้หลักการ 3 จริง [9] แล้วทำการระดมมองรวมกับผู้เกี่ยวข้องกับสาขาวิชาสัจitra ของกระบวนการตัดชิ้นโดยผ่านแผนภูมิกำาลังบังคับกำหนด รายการของสาเหตุซึ่งช่วยให้ได้รายละเอียดอย่าง ครบถ้วน แล้วจึงทำการพิจารณาข้อมูลเพื่อจัดสร้างสิ่งแวดล้อม ทำให้การทดลองมีเพิ่มเติมเพื่อวิเคราะห์ที่มีปัจจัยสัมพันธ์ (interaction effect) โดยมีปัจจัยเวลาในการขัด (lapping time) เป็น
ปัจจัยที่น่าจะมีผลต่อคุณค่าได้ที่ต้องพิจารณาในขณะที่ทำการทดลอง เนื่องจากเวลาในการขัดเป็นตัวชี้วัด เนื่องจากความคิดของผู้ช่วยในการกระบวนการขัด ซึ่งส่งผลให้การทดลองต้องตั้งค่าความคงลงชั้นส่งผลให้อายุการ
การทดลองตามไปด้วย

2.3 การทดสอบและวิเคราะห์ปัจจัยที่ควบคุมได้
และได้รับการควบคุมปัจจัย
เมื่อทำการวิเคราะห์สาเหตุแล้วพบว่าปัจจัยใน
ผลิตที่อาจจะส่งผลต่อค่าความผันแปรของค่าความ
t้านทานในปัจจัยใดบาง หลังจากนั้นต้องทำการพิจารณาว่า
ปัจจัยใดที่ส่งผลกระทบต่อความผันแปรของค่าความ
t้านทานอย่างมีนัยสำคัญ ซึ่งจะเรียกปัจจัยที่ส่งผลต่อ
ความผันแปรของค่าความต้านทานว่า สาเหตุตัวหลัก คำว่า
พิสูจน์ปัจจัยที่ส่งผลกระทบที่ใช้การทดลองในกระบวนการ
ผลิตจริง เพื่อให้จำนวนการทดลองไม่เกินกับที่ถูก
ออกแบบการทดลองเพื่อป้องกัน หลังจากนั้นจึง
ทำการทดลองเพื่อเพิ่มเติมเพื่อวิเคราะห์ที่มีปัจจัยสัมพันธ์ (interaction effect) โดยมีปัจจัยเวลาในการขัด (lapping time) เป็น
ปัจจัยที่น่าจะมีผลต่อคุณค่าได้ที่ต้องพิจารณาในขณะที่ทำการทดลอง เนื่องจากเวลาในการขัดเป็นตัวชี้วัด เนื่องจากความคิดของผู้ช่วยในการกระบวนการขัด ซึ่งส่งผลให้การทดลองต้องตั้งค่าความคงลงชั้นส่งผลให้อายุการ
การทดลองตามไปด้วย

2.3.1 การทดสอบการปัจจัยโดยใช้วิธีการของ
ทาง [10]
ในขั้นตอนของการทดลองปัจจัยนั้นจำเป็นต้องใช้
ความรู้ในการวิศวกรรมและทฤษฎีการทดลองปัจจัย
บางตัวอย่าง ในการนี้ที่มีบางปัจจัยไม่สามารถสรุปผลได้
รู้ตัวดำเนินการพิสูจน์สาเหตุที่น่าจะเป็น โดยใช้วิธีการนี้
ใช้วิธีการของทาง [10] สำหรับขั้นieme ปัจจัยที่มี 3 ระดับคือ
ปัจจัยความเร็วของจานขับ ความเร็วของเชนก และ
ความดึงของเชนก สำหรับลิ้น 2 ปัจจัย คือ ตำแหน่งการ
ติดตุ๊กmacro และระยะชี้มี 2 ระดับ ซึ่งจากเรื่องใดเรื่องที่จะ
ถูกนำไปใช้ในเลือกเป็นตาราง Orthogonal Array: OA L18
(2^3×3^3) สำหรับใช้ในการทดลองปัจจัยโดยใช้ระดับความ
 wagesawasri and Pattana. Msc. No. 32 ฉันท์ที่ 2-3 แหล่ง-กัญญา 2552 257
มีนัยสำคัญ 0.10 ซึ่งจะน่าจะแผนการออกแบบการทดลองที่ได้ไปใช้กับข้อมูลจริงในการผลิต

2.3.2 การออกแบบการทดลองโดยใช้ 2ⁿ แฟคتورเรียง

ในการทดลองแบบ 2ⁿ แฟคتورเรียงนี้จะปัจจัยที่ผ่านการออกไปเป็นวิธีการตอบทุกปัญหาที่ทราบถึงอิทธิพลรวมของปัจจัยที่มากกว่า 2 ปัจจัยซึ่งไม่ได้ผลต่อความผันแปรของค่าความดันทางระหว่างบาร์อย่างมีนัยสำคัญหรือไม่ โดยออกแบบการทดลองจำเป็นต้องหาจำนวนของสิ่งตัวอย่างที่ใช้ในการทดลองโดยกำหนดระดับของอานาจในการทดลองอยู่ที่ระดับ 85 เพื่อความผันแปรผลจากการตัดสินใจอยู่ในระดับที่สามารถทำได้ในสถานการผลิตจริง ดังนั้นเมื่อทราบจำนวนของปัจจัยที่ต้องการศึกษา ระดับของปัจจัยแต่ละตัว (ซึ่งกำหนดเฉพาะของกระบวนการที่ใช้อยู่ในปัจจุบัน) ระดับความผันแปรที่ต้องการศึกษา และขนาดสิ่งตัวอย่าง ก็สามารถทำแผนการออกแบบการทดลองได้ จากนั้นจึงน่าจะแผนการออกแบบการทดลองไปดำเนินการทดลองจริงในสภาพการผลิตต่อไป

2.4 การทดสอบและวิเคราะห์ปัจจัยที่ควบคุมไม่ได้ แล้วถูกสะสมในกระบวนการผลิต

ผลจากท่าการวิเคราะห์ปัจจัยที่ควบคุมไม่ได้และปัจจัยที่ควบคุมไม่ได้ว่า ส่งผลต่อความดันทางระหว่างบาร์หรือไม่แล้ว ในบางกรณีปัจจัยเหล่านี้ยังไม่สามารถทดลองความแตกต่างของค่าความดันทางระหว่างบาร์ได้อย่างเพียงพอ จึงจำเป็นจะต้องศึกษาถึงปัจจัยอื่น ๆ ที่ยากและสมบูรณ์ตัวอย่าง การทดสอบปัจจัยที่สามารถควบคุมได้แต่ถูกสะสมของกระบวนการต้องอยู่ในที่จะทำได้ใช้ 2-sample t เพื่อพิสูจน์สมมุติฐานที่ว่าการทดลองไม่มีผลต่อความแตกต่างของความดันทางระหว่างบาร์ โดยการควบคุมปัจจัยต่าง ๆ ในกระบวนการจะใช้ตามมาตรฐานเดิมแต่เปลี่ยนเฉพาะปัจจัยวิธีการควบค่าที่น้ำ

จากจำนวนสิ่งตัวอย่างเพื่อใช้ในการทดสอบปัจจัย โดยกำหนดระดับในการทดลอง ดังนี้

1. กำหนดระดับนัยสำคัญที่ 0.05 ต้องการให้มีความเสี่ยงในการตัดสินใจน้อย

2. กำหนดระดับของอานาจในการทดลองอยู่ที่ 85 เพื่อให้มีความถูกต้องสูง และจำนวนในการทดลองอยู่ในระดับที่สามารถทำได้ในสถานการผลิตจริง

3. คำวิเคราะห์ต่างของคำเลือกที่สามารถยอมรับได้ระหว่างกรอบจำแนกย่อยที่ 4 ไอบน ถ้าผลจากการชี้พิจารณาความดันทางแตกต่างกันเกิน 4 ไอบน จะส่งผลและต่อรับแบบแก้

4. คำวิเคราะห์แบบมาตรฐานของความดันทางในกระบวนการชี้เฉพาะย่อยที่ 2.624 ไอบน จากนั้นจึงไปดำเนินการแก้ไขข้อมูลจริงในการผลิต

3. ผลและวิเคราะห์การทดลอง

3.1 ผลการวิเคราะห์กระบวนการวัด

ผลการประเมินกระบวนการวัดพบว่าความผันแปรของข้อมูลที่วัดได้มีขนาดลูมจากกระบวนการชี้เฉพาะย่อยเป็นส่วนใหญ่ และเป็นความผันแปรที่มาจากกระบวนการวัด (Total Gage R&R) เพียงร้อยละ 0.55 ซึ่งอยู่ในเกณฑ์ที่ยอมรับได้ (ความผันแปรจากเครื่องวัดมีค่าน้อยกว่าร้อยละ 10 อยู่ในเกณฑ์ที่ 11) ทำให้มั่นใจได้ว่าความดันทางที่เครื่องวัดได้นั้นสะท้อนถึงความผันแปรที่มาจากกระบวนการชี้เฉพาะย่อยจริง ๆ คือกระบวนการวัดไม่มีอิทธิพลต่อความผันแปรในการวัด

3.2 ผลการวิเคราะห์สายทางคู่ของปัญหา

จากการระดับมองรวมกับผู้มีความรู้เกี่ยวกับกระบวนการชี้เฉพาะย่อยและมีประสบการณ์มากไม่น้อยกว่า 10 ปี ได้แก่ ผู้จัดการแผนก วิศวกรคุณครอง หัวหน้าช่าง ช่างทำบาร์ ช่างเทคนิค และพนักงานแผนกพัฒนาผลิต ได้ชื่อแสดงในรูปที่ 4
สำหรับที่เป็นไปได้ที่จะหมดที่ส่งต่อความผันผวนของความดันที่ผ่านทางระดับบาง ซึ่งปัจจัยสามารถควบคุมได้และได้รับการควบคุมตามมาตรฐานอยู่ในปัจจุบัน ยกเว้นวิธีการกำหนดเป็นปัจจัยที่ยังไม่ได้รับการควบคุม เนื่องจากยังไม่มีมาตรฐานการปฏิบัติงาน และพนักงาน แต่ละคนเก็บปฏิบัติไม่เหมือนกัน (สามารถดูรายละเอียดการ กำหนดได้ในหัวข้อ 3.4)

เมื่อนำวิธีการของทางธุรกิจมาด้วยเพื่อกำหนด ปัจจัยที่ส่งผลต่อความผันผวนของความดันที่ผ่านทางงานระดับบางรวมกับความรู้ในงานวิศวกรรมทำให้มี ปัจจัยบางตัวที่ไม่ได้ถูกพิจารณากับลูกน้อยซึ่งสามารถศึกษาเพิ่มเติมจาก [12] โดยการทดลองแผนพัฒนาปลายน้ำ พบว่า สาเหตุที่มีผลต่อความผันผวนของความดันทางอย่างมีนัยสำคัญ 6 ปัจจัย โดยมี 5 ปัจจัย คือ ตัวแปรการติดตัว (A) ความเร็วของแขวนข้าง (B) ความรีของแทนก (C) ระยะข้าง (D) และความสูงของแทนก (E) เป็นปัจจัยที่สามารถควบคุมได้และมีการควบคุมอยู่ในปัจจุบัน ส่วนอีก 1 ปัจจัยคือ วิธีการติดตัว เป็นปัจจัยที่ยังไม่ได้รับการควบคุมในปัจจุบัน ซึ่งเหตุผล สำคัญ 2 ปรากฏการณ์ที่ทำให้ปัจจัยนี้เป็นปัจจัยที่ไม่ได้รับการ ควบคุม คือ ข้อจำกัดการในวงงานตัวอย่างเช่นจำนวนที่ หมู่ของจี้อีดงาน (puck) ที่ใช้ในกระบวนการซัด และถ้านั้นจะช่วยลดการทำงานขณะที่ทำกรีด ทำให้ พนักงานทำงานของขั้นงานแบบที่ติดกับจี้ยิงงานกี่ เพียงพอแล้ว ข้อสองการส่งผลกั้นขั้นงานอาจทำให้เกิด การเป็นเรื่อยขึ้น จากนั้นจริงทำกรีดพิสูจน์สมมุติฐานว่า ปัจจัยต่างๆ เหล่านี้มีผลจริงหรือไม่ ด้วยการออกแบบการ ทดลอง โดยระดับของปัจจัยที่ใช้ในการกระทำปัจจัย ดังตารางที่ 1
ตารางที่ 1 ปัจจัยที่เป็นชั้นและระดับของปัจจัยที่ใช้ชื่อในปัจจัย

<table>
<thead>
<tr>
<th>ปัจจัยที่เป็นชั้น</th>
<th>หน่วย</th>
<th>ระดับพารามิเตอร์ในการทดลอง (Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ตำแหน่งการติดตั้ง (bar position) : (A)</td>
<td>แบบ</td>
<td>Low</td>
</tr>
<tr>
<td>2. ความเร็วเริ่มขี่ของจักร (speed plate) : (B)</td>
<td>รอบ/นาที</td>
<td>2</td>
</tr>
<tr>
<td>3. ความเร็วของการขับเคลื่อน (oscillation speed) : (C)</td>
<td>Stroke/นาที</td>
<td>1</td>
</tr>
<tr>
<td>4. ระยะชัด (stroke length) : (D)</td>
<td>นิ้ว</td>
<td>1.1</td>
</tr>
<tr>
<td>5. ความสูงของแขนกับ (arm height) : (E)</td>
<td>นิ้ว</td>
<td>0.62</td>
</tr>
</tbody>
</table>

3.3 ผลการทดสอบและวิเคราะห์ปัจจัยที่ควบคุมได้และได้รับการควบคุมปัจจัยบูช

3.3.1 ผลการทดสอบกรอบปัจจัยโดยใช้วิธีการของหากุชิ

ผลการกรอบปัจจัยด้วยวิธีการของหากุชิผ่านค่า Signal-to-noise ratio พบว่าปัจจัยความเร็วเริ่มขี่ของจักร (B) ความเร็วของแขนกับ (C) และระยะชัด (D) มีผลต่อค่าความผันผวนค่าความดันทานของงานระหว่างบาร์อย่างมีนัยสำคัญ ที่ระดับความนัยสำคัญ 0.10 ดังรูปที่ 5 การกรอบปัจจัยด้วยวิธีการอนุกรมพื้นฐาน ดังนั้นจึงต้องนำที่ 3 ปัจจัยไปเปลี่ยนแปลงกรอบทดลองโดยใช้ 2^n แพคทองฝั่งอีกครั้งเพื่อพิจารณาเกี่ยวกับผลระหว่าง 2 ปัจจัยที่เกิดขึ้นด้วย

Linear Model Analysis: SN ratios versus A, B, C, D, E

Estimated Model Coefficients for SN ratios

<table>
<thead>
<tr>
<th>Term</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>25.9014</td>
<td>1.066</td>
<td>23.511</td>
<td>0.000</td>
</tr>
<tr>
<td>A 1</td>
<td>0.8840</td>
<td>1.005</td>
<td>0.796</td>
<td>0.446</td>
</tr>
<tr>
<td>B 1</td>
<td>4.5067</td>
<td>1.421</td>
<td>3.171</td>
<td>0.011</td>
</tr>
<tr>
<td>D 2</td>
<td>-0.4058</td>
<td>1.421</td>
<td>-0.285</td>
<td>0.782</td>
</tr>
<tr>
<td>C 1</td>
<td>-3.1933</td>
<td>1.421</td>
<td>-2.247</td>
<td>0.051</td>
</tr>
<tr>
<td>C 2</td>
<td>1.9598</td>
<td>1.421</td>
<td>1.394</td>
<td>0.333</td>
</tr>
<tr>
<td>D 1</td>
<td>2.1016</td>
<td>1.066</td>
<td>1.972</td>
<td>0.056</td>
</tr>
<tr>
<td>E 1</td>
<td>-1.2516</td>
<td>1.421</td>
<td>-0.881</td>
<td>0.401</td>
</tr>
<tr>
<td>E 2</td>
<td>3.9479</td>
<td>1.421</td>
<td>2.778</td>
<td>0.021</td>
</tr>
</tbody>
</table>

S = 4.264 R-Sq = 76.9% R-Sq(adj) = 56.4%

Analysis of Variance for SN ratios

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>11.53</td>
<td>11.53</td>
<td>11.53</td>
<td>0.63</td>
<td>0.446</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>223.75</td>
<td>223.75</td>
<td>111.88</td>
<td>6.15</td>
<td>0.021</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>92.01</td>
<td>92.01</td>
<td>46.01</td>
<td>2.59</td>
<td>0.134</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>78.67</td>
<td>78.67</td>
<td>78.67</td>
<td>3.09</td>
<td>0.080</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>146.53</td>
<td>146.53</td>
<td>73.27</td>
<td>4.83</td>
<td>0.056</td>
</tr>
<tr>
<td>Residual Error</td>
<td>9</td>
<td>163.62</td>
<td>163.62</td>
<td>18.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>708.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

รูปที่ 5 ผลการทดสอบกรอบปัจจัยโดยใช้วิธีการของหากุชิ
3.3.2 ผลการออกแบบการทดลองโดยใช้ 2^k แพคทรีย์เรียล

การทดลองนี้มีปัจจัยที่สามารถควบคุมได้แล้วทั้งการปรับค่าเมื่อ 3 ปัจจัย ดังที่กล่าวมาแล้วช่วงต้นและมี 2 ปัจจัยที่เป็นปัจจัยที่ไม่สามารถควบคุมได้ในขณะที่ท้า
การทดลอง คือปัจจัยแวร์ในขั้นตอน ทำให้ในการทดลองนี้จึงวิเคราะห์ผลด้วยวิธี Analysis of Covariance: ANACOVA โดยเลือกทำการทดลองที่ 3 ชั้น เพราะให้ค่าระดับของอ่านจานในการทดสอบสูงถึงร้อยละ 94 และสามารถที่จะทำการทดลองได้จริง จึงทำให้มีการทดลองทั้งหมด 24 การทดลอง จากผลการทดลองในรูปที่ 6 พบว่าไม่มีอิทธิพลรวมของปัจจัยต่างกล่าว โดยปัจจัยที่มีผลต่อ
ความผันแปรของค่าความสัมประสิทธิ์ระหว่างบางระในมีนัย
สัคัญ คือ ความเร็วรอบของงานขั้น ระยะขั้น และเวลา
ในการซื้อ ที่ระดับความนิยามสัคัญ 0.05 ดังสมการที่ 1
แสดงความสัมพันธ์ของปัจจัยต่างๆ ดังกล่าวกับค่าความ
สัมประสิทธิ์ระหว่างบาง (ความสัมประสิทธิ์ของบาง) ซึ่ง
เป็นสมการที่ได้จากการทดลองและมีความถูกต้องในระดับ
ที่ยอมรับได้ (PRESS = 76.2877) และเพื่อให้งานที่ขั้น
จากการกระบวนการซื้อและเยียวยาตามค่าเป้าหมาย

\[MRR = 39.1585 - 0.06953 \text{ laptime} + 2.46426 \text{ speed plate} + 2.35399 \text{ stroke length} \] (1)

<table>
<thead>
<tr>
<th>Factorial Fit: MRR I versus Laptime, Speed plate, ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Effects and Coefficients for MRR I (coded units)</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td>Laptime</td>
</tr>
<tr>
<td>Speed plate</td>
</tr>
<tr>
<td>Oscillation speed</td>
</tr>
<tr>
<td>Stroke length</td>
</tr>
</tbody>
</table>

[S = 1.58620 PRESS = 76.2877]
R-Sq = 73.96% R-Sq(adj) = 69.96% R-Sq(adj) = 65.47%

Analysis of Variance for MRR I (coded units)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverates</td>
<td>1</td>
<td>25.55</td>
<td>25.55</td>
<td>25.55</td>
<td>10.03</td>
<td>0.005</td>
</tr>
<tr>
<td>Main Effects</td>
<td>3</td>
<td>111.91</td>
<td>111.91</td>
<td>37.304</td>
<td>14.64</td>
<td>0.000</td>
</tr>
<tr>
<td>Total Error</td>
<td>19</td>
<td>48.41</td>
<td>48.41</td>
<td>2.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>185.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unusual Observations for MRR I

<table>
<thead>
<tr>
<th>Obs NoOrder</th>
<th>MRR I</th>
<th>Fit</th>
<th>SE Fit</th>
<th>Residual</th>
<th>St Resid</th>
<th>St Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>45.5109</td>
<td>49.6074</td>
<td>0.6634</td>
<td>-3.965</td>
<td>-2.34R</td>
<td></td>
</tr>
</tbody>
</table>

R denotes an observation with a large standardized residual.

Estimated Coefficients for MRR I using data in uncoded units

<table>
<thead>
<tr>
<th>Term</th>
<th>Coef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>39.1585</td>
</tr>
<tr>
<td>Laptime</td>
<td>-0.06953</td>
</tr>
<tr>
<td>Speed plate</td>
<td>2.46426</td>
</tr>
<tr>
<td>Oscillation speed</td>
<td>0.3537</td>
</tr>
<tr>
<td>Stroke length</td>
<td>2.35399</td>
</tr>
</tbody>
</table>

รูปที่ 6 ผลการวิเคราะห์ผลการทดลอง 2^k แพคทรีย์เรียล
โดยเป้าหมายในการขีดงานรุ่นต่ำอย่างนี้ในแต่ละบริษัทจะอยู่ที่ 48 occo เนื่องจากเวลา main effect plot และความสะดวกในการบริบังเพิ่มเติม [12] พบว่าค่าตั้งระย่ำซ้ำที่ 2 นั้น และเมื่อแทนค่าลงใน MRR = 48 ในสมการที่ 1 สามารถสร้างตัวแบบใหม่ได้ ดังสมการที่ 2

จากสมการที่ 2 แสดงการปรับตั้งโดยอาศัยความรีวิวลายของงานขีดเป็นตัวแปรย่อยต่ำที่เกิดจากการขีดเวลาตั้งระย่ำซ้ำ ซึ่งการปรับระยะเวลาขีดเป็นไปได้อย่างในการผลิตจริง โดยที่ได้ตั้งค่าความทนทานของงานในแต่ละบริษัทเป็นเวลาที่ 48 occo และถึงระย่ำซ้ำที่ 2 นั้น หลังจากนั้นจึงนำมาใช้สมการที่ 2 โปิ่ปึงชิ้นโดยที่จุดการทดลองที่งานจำนวน 3 ตลอดจนซ้าย โดยมีเงื่อนไขในการทดลองให้เป็นไปตามมาตรฐานการปรับตั้งในปัจจุบัน แต่จะเพิ่มเติมในส่วนของการนำเสนอความจำเป็นซ้ำช่วยความสามารถของงานขีดเพื่อให้งานในแต่ละระย่ำซ้ำ คาดว่าความรีวิวลายของงานขีดเพื่อให้ความแตกต่างด้านในแต่ละบริษัทเป็นเวลาที่ 48 occo โดยแสดงจากการทดลองจริงว่าตัวแบบทดสอบที่นำมาใช้งานนั้นไม่เหมาะสมกับการนำไปใช้งานจริงเนื่องจากยังมีตัวปัจจัยอื่นที่ไม่สามารถควบคุมได้อีกมาการระบุ เช่น ความทนทานของแรงที่ต้องควบคุมงานขีด คาดว่าความรีวิวลายของงานขีดเป็นต้น ซึ่งถึงที่ 2 ปัจจัยดังกล่าวอื่นได้ไม่มีตัววัดเนื่องจากมีข้อจำกัดด้านเครื่องมือ วัด ซึ่งถ้าในอนาคตที่ 2 ปัจจัยสามารถวัดได้จะทำให้ได้ตัวแบบทดสอบที่มีความสอบลดลงกับสภาพการทำงานจริงมากยิ่งขึ้น

3.4 ผลการทดสอบและวิเคราะห์ปัจจัยที่ควบคุมได้ แหล่งที่มาในกระบวนการผลิต

เนื่องจากผลการทดสอบค่าต่ำอย่างนี้ที่สร้างจากปัจจัยที่ได้รับการควบคุม แล้วทำให้การปรับไปยังระย่ำซ้ำของปัจจัยที่ให้ค่าที่เหมาะสมกว่า ค่าความทนทานของชิ้นงานในหลายบางบริษัทมีโอกาสเปลี่ยนแปลง แต่มีขั้นตอนบางการมีค่าความทนทานแตกต่างไปอย่างมาก ซึ่งหมายความว่าไม่สามารถลดความพันแปรของความด้านที่ระย่ำซ้ำได้ คาดว่าสาเหตุนั้นมาจาก 2 กลุ่มหลัก คือ 1) ปัจจัยที่ควบคุมไม่ได้ ตั้งแต่เคยนำไปแล้ว ในหวังชัย 3.3.2 และ 2) ปัจจัยที่ควบคุมได้ แต่ไม่ได้รับการควบคุมในปัจจุบัน ดังนั้นจึงจำเป็นที่จะทราบถึงบริษัทที่สามารถควบคุมได้ แต่ไม่ได้รับการควบคุม นั้นก็ต้อง วิธีการก่อกลับ โดยมีแนวความคิดในการพิจารณาเรื่องการก่อกลับ บางคือก่อนเข้าสู่กระบวนการผลิตเยื่อ ซึ่งงาน สไลด์บางที่มีลักษณะเป็นหัวงานจำนวน 54 ตัวที่เรียงติดต่อกัน โดยบางจะต้องติดต่อกับและด้านกระบวนการขัดหยาดก่อน การที่ผลิตเครื่องมือมีลักษณะเป็นบริษัทมีขนาดเล็กมากที่จะมีการมีการผลิตเยื่อ กู้คิดเป็นงาน และเมื่อชิ้นงานที่มีถูกนำไปใช้ต่อในกระบวนการผลิตเยื่อจะทำให้ความรีวิวลายซ้ำส่วนที่บิดและไม่ได้มีความแตกต่างกันมากเมื่อกำหนดเวลาใน การขัดหยาดที่ สำเร็จให้ค่าความทนทานซึ่งมีความสัมพันธ์กับความพยายามของชิ้นงานมีความแตกต่างเกิดขึ้นระหว่างชิ้นงานที่เกิดการบิดและชิ้นงานที่ไม่บิด

ด้วยเหตุผลดังกล่าวยังมีการวางบริการในปัจจุบันได้ ถึง 3 จุด ดังในรูปที่ 7 ก่อนจะไม่ได้ช่วยให้ สไลด์บางการผลิตด้วยความเครื่องมือที่เกิดขึ้นในกระบวนการขัดหยาดทำได้ ถึงกันที่ไม่มีวิธีการก่อกลับยิ่งในมาตรฐานการปฏิบัติงาน ส่วนในรูปที่ 7 นั้นแสดงแนวความคิดเจาะซึ่งเป็นเรื่องสำคัญในกระบวนการให้แรงในลักษณะที่มีการกระจายตัวเรื่อยๆ ภูมิพื้นที่ต่างความ ยาวของสไลด์บาง การใช้โดยการใช้ไล่กลับที่ลอง ไปส่งต่อการควบคุมการขัด เพราะวิธีนี้จะช่วยให้บริษัทที่มีความเครื่องมือแล้วสามารถลดการบิดตัวของสไลด์บางการได้
รูปที่ 7 แนวความคิดของวิธีการทดสอบ

โดยผลการทดสอบด้วยวิธี 2-sample t พบว่า วิธีการทดสอบ 2 วิธีให้ค่าความผิดทางแลกเปลี่ยนของแต่ละรูป แตกต่างกันอย่างมีนัยสำคัญ ที่ระดับนัยสำคัญสัมพันธ์ 0.05 (P-value = 0.000) หมายความว่าวิธีการทดสอบใดจะมีผลต่อการกระจำเร่งยอดห้องรับ กำหนดการใช้ค่าความผิดทางแลกเปลี่ยนระหว่างจาก MRR ในการออกแบบ 3 ชุด และในการทดสอบความแปรปรวน ของค่า MRR ระหว่างรูปด้วย F-test (H: σ วิธีการทดสอบ ใหม่ < σ วิธีการทดสอบเก่า) พบว่าวิธีการทดสอบใหม่ (แบบแบบ กระจำเร่ง) ให้ค่าความแปรปรวน MRR ระหว่างรูป น้อยกว่าวิธีการเดิม (แบบแบบจุด) อย่างมีนัยสำคัญ ที่ระดับนัย สำคัญสัมพันธ์ 0.05 (P-value = 0.0049) หมายความว่าวิธี การทดสอบแบบกระจำเร่งช่วยให้ค่า MRR ของงานใน แต่ละรูปออกมาใกล้เคียงกว่าวิธีการเดิม จากนั้น จึงพิจารณาถึงผลกระทบที่เกิดขึ้นจากการที่มีการนำหนักไปลด หั้งงานเกินที่จะมีการชัดและเอ็ดเกิดขึ้น โดยการนำขึ้น งานไปไว้ตัวสำหรับกระจำเร่งทางไฟฟ้าตัวอื่น ๆ ประมาณ 14 ตัว ซึ่งพบว่าวิธีการทดสอบแบบใหม่ยังไม่ทำให้ตัวสำหรับกระจำเร่ง ทางไฟฟ้าตัวอื่น ๆ หลุดออกจากกันหมดเลย (specification)

3.5 การยืนยันผลการทดสอบ
หลังจากศึกษาถึงผลกระทบที่อาจเกิดขึ้นจากการ ปรับปรุงแล้วจึงใช้กับงานจริงในสายการผลิตหัวอานเชื้อ ของอุปกรณ์กับตัวอย่างจำนวน 8 ผลิต (จำนวนผลิต 15,084 ตัว) ทำการผลิตต่อเนื่องกันไป โดยใช้เครื่องช่วง เดียวกันกับที่ทำการทดสอบปัจจุบันและเป็นเรื่องใดเดียวกับ การผลิตปัจจุบัน ดังตารางที่ 2 โดยปรับเปลี่ยนวิธีการทดสอบ หรือการชัดและเอ็ดคือ

ตารางที่ 2 ระดับปัจจัยในการผลิตชั้น (ใช้อยู่ในปัจจุบัน)

<table>
<thead>
<tr>
<th>ปัจจัยที่มีอิทธิพล</th>
<th>หน่วย</th>
<th>ระดับปัจจัยในการผลิตชั้น</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ความเร็วขับขี่ของชุด</td>
<td>รอบ/นาที</td>
<td>Low</td>
</tr>
<tr>
<td>2. ความเร็วของแขวนก</td>
<td>Stroke/นาที</td>
<td>Low</td>
</tr>
<tr>
<td>3. ระยะขัด</td>
<td>นิ้ว</td>
<td>Low</td>
</tr>
</tbody>
</table>

เพื่อให้การยืนยันผลมีความน่าเชื่อถือเพิ่มขึ้น การ ปรับเปลี่ยนวิธีการทดสอบก่อนทำการทดลองเปลี่ยนแปลงการทดลอง ออกเป็น 3 ชั่ว คือในการผลิต 20 ผลิต จะทำการเปลี่ยน วิธีการทดสอบ 7-14 เท่านั้น เพื่อยืนยันว่าผลการควบคุม ผลความผิดของค่า MRR ระหว่างรูปชั้น และเพื่อ มั่นใจได้ว่าความแตกต่างที่เกิดขึ้นไม่ได้เป็นอันตรายมากจาก ปัจจัยอื่นๆ เช่น วัดอุดมในการผลิต เป็นต้น แล้วทำการ ตรวจสอบผลการปรับปรุงด้วยแผนภูมิควบคุม p ดังรูปที่ 8 พบว่ารูปการทดสอบแบบใหม่ให้ค่าผลต่างส่วนของผลิตเกินข์ บวกระหว่างประมาณ MRR เท่ากับ 0.0546 ดังกว่ารูปการ กดการทำงานเดิม ซึ่งอยู่ที่ 0.0938 และ 0.0736 ตามลำดับ
รูปที่ 8 แผนภูมิควบคุมสัดส่วนของเสียเรียบร้อยที่ใช้วิธีการกำหนดคูณิและค่าปอที่น้อย

รูปที่ 9 การทดสอบความสามารถของกระบวนการขัดและเยียดหลังปรับปรุง

จากนั้นจึงทำการทดสอบผลการปรับปรุงกระบวนการขัดและเยียด โดยการใช้วิธีการควบคุมแบบใหม่ ด้วยการวิเคราะห์ความสามารถของกระบวนการขัดและเยียด ดังรูปที่ 9 พบว่า ค่าของตัวชี้วัด Cpk เพิ่มขึ้น 0.41 ทำให้การผลิตได้ดียิ่งขึ้นทางไฟฟ้า เพิ่มขึ้นมาอยู่ที่ร้อยละ 91.86 (เพิ่มขึ้นมาอยู่ที่ร้อยละ 0.35) และทำให้ผลผลิตได้ร่วมเพิ่มขึ้นมาอยู่ที่ร้อยละ 84.81 ของชิ้นงาน ที่ทำการผลิต
4. สรุปผล

งานวิจัยนี้ได้นำเสนอวิธีการลดของเสีย หรือผลิตภัณฑ์ตกค้างของโรงงานโดยเป็นข้อมูลของทางไฟฟ้าประกอบกิจการ
ต้านทานที่สูงหรือต่ำเกินไปที่เกิดขึ้นในกระบวนการผลิต
หัวอ่านอัตรัดิติติเก็บเป็นปัญหาที่เกิดผลกระทบร่างละเอียด
ได้และลูกค้า โดยเริ่มจากการทดสอบและวิเคราะห์ปัญจจุบันที่
ควบคุมได้และได้รับการควบคุมอยู่แล้วในปัจจุบัน การผลิต
ที่เกิดขึ้นเนื่องจากการปรับปัจจัยดังกล่าวไม่สามารถลดของเสียที่
เกิดขึ้นได้ ในกรณีตัวอย่างคำว่าเป็นเพราะมีปัญจจุบันที่
ไม่สามารถควบคุมได้ถึงการระบาย เช่น ความนาน
แน่นของปั๊มที่อัตโนมัติงานขับ คำว่าเรียกของมี
จานขับ เป็นต้น ซึ่งทั้ง 2 ปัจจัยดังกล่าวไม่มีตัววัดเพื่อที่
จะทำการควบคุมเพื่อปัญจจุบันข้อจำกัดของเครื่องมือวัด จากนั้น
จึงนำปัจจัยที่สามารถควบคุมได้ แต่ถูกละเลยและแต่ละด้าน
คือ วิธีการลดของเสียในกระบวนการผลิต กลับมาตรวจ
พบว่า สามารถช่วยลดของเสียที่เกิดขึ้นได้เห็นผลอย่าง
ชัดเจน

5. ข้อเสนอแนะ

ผลจากการทำวิจัย พบว่าความคืบหน้าของคำว่าควบคุม
ต้านทานของงานประกอบการในกระบวนการผลิต ตาม
การบันทึกของข้อ ดูจุดสำคัญของวิธีการควบคุมในเนื่อง
การทำให้ระบบของไฟฟ้าต่างๆ แผนที่ติดต่ออยู่กับ
ที่ติดต่อกับด้านก่อนที่จะนำไปใช้ส่งก่อน โดยผู้วิจัย
ได้เสนอแนะทางในการควบคุมบูรณาการของการ
ควบคุมวิธีการลดของเสีย 2 วิธี คือ วิธีแรกโดยใช้เทคนิคและ
วิธีที่สองใช้เครื่องจักร ซึ่งจากการพิจารณาถึงข้อดีและข้อ
เสีย รวมถึงความคุมค่าในการใช้ในความเห็นของผู้
วิจัยได้เสนอให้ใช้เครื่องจักรเฉพาะงานที่ทำการผลิตใน
แต่ละวันมีเป็นจำนวนมาก การใช้เครื่องจักรอาจจะ
จะแทนการปฏิบัติตามขั้นตอน และการใช้เครื่องจักรทำให
มันเป็นว่าการปฏิบัติงานจะเป็นไปตามแผนการควบคุมที่
วางไว้สำหรับตรวจสอบในจุดปฏิบัติงาน

6. ภัยคุกคาม

งานวิจัยนี้ได้รับคุณสมบัติจากสหกรณ์กองทุน
สนับสนุนการวิจัยทุนวิจัยที่มีกำหนด มง. สาขา
วิทยาศาสตร์และเทคโนโลยีภายใต้โครงการสานักงาน
เพื่อพัฒนาอุตสาหกรรมระดับปริญญาโท (สกว.-สสว.)
ประจำปี 2550

7. เอกสารอ้างอิง

1. ภักษา อาภูริณุฒิ, 2546, การลดของเสียที่เกิดจาก
ค่าการรับนำหนักของชุดหัวอย่างสำเร็จไม่ได้ตามข้อ
กำหนดในกระบวนการประกอบร่างควบคู่ด้วยไปพ่ายPRODUCT
ซาม่า, วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์
จุฬาลงกรณ์มหาวิทยาลัย, หน้า 28-36.

2. มณีรัศมี ตันเจริญ, 2546, การลดผลิตภัณฑ์
ตกค้างของนี้จากการควบคุมปัญหาของไฟฟ้าต่างๆ
ในกระบวนการผลิตหัวอ่านอัตรัดิติติเก็บข้อมูลของ, วิทยานิพนธ์
ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรม
ระบบการผลิต คณะวิศวกรรมศาสตร์ มหาวิทยาลัย
เทคโนโลยีพระจอมเกล้าธนบุรี, หน้า 21-81.

3. วิทยาการ ฤทธิ์นันที, 2545, การลดปริมาณ
ผลิตภัณฑ์ตกค้างของงานในกระบวนการผลิตบนสื่อ
เดียว, วิทยานิพนธ์ปริญญาวิศวกรรมศาสตร์ มหาบัณฑิต
สาขาวิชาวิศวกรรมระบบการผลิต คณะวิศวกรรมศาสตร์
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, หน้า 51-75.

4. จุลินทร์ เจริญภูมิ, 2546, การใช้วิธีวิทยา
ชีววิทยา ในกรณีที่มีคุณค่าทางพืชพันธุ์, วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมระบบการผลิต คณะวิศวกรรมศาสตร์
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, หน้า 38-52.

5. ศิรินที เจริญภูมิ, 2546, การลดปริมาณ
จากกระบวนการผลิตหัวอ่านเชิงน้ำหนักคอมพิวเตอร์โดย
การประยุกต์ใช้วิธีวิทยาชีววิทยา, ชินม้า, วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมอุปถัม
การ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, หน้า
52-59.

6. สุเมธ มุลตาภิญญ, 2547, การประยุกต์ใช้วิชวิทยา
ชีววิทยาในกระบวนการผลิตอุปกรณ์ไม้แก่ก้านแสง, วิทยานิพนธ์
ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรม
ระบบการผลิต คณะวิศวกรรมศาสตร์ มหาวิทยาลัย
เทคโนโลยีพระจอมเกล้าธนบุรี, หน้า 28-32.

9. ยิ่งศักดิ์ ผล＇ล sacrifices in 1999, 2550, ทำผ่านการตรวจสอบความมีคุณภาพ. พิมพ์ครั้งที่ 1, สามหมู่สังเกตันเทคโนโลยี (ไทย-ฝรั่งเศส), กรุงเทพฯ, หน้า 100.

11. ยิ่งศักดิ์ ผล＇ล sacrifices in 1999, 2549, การวิเคราะห์ระบบการวัด, พิมพ์ครั้งที่ 5, สามหมู่สังเกตันเทคโนโลยี (ไทย-ฝรั่งเศส), กรุงเทพฯ, หน้า 61-174.

12. เทวศักดิ์ ชุมนุมวุฒิศิลป์, 2550, การผลิตความผิด-plane in MRR จากการชั้นที่กระบวน MRR ของ หัวอ่านเขียนสารสนเทศ, วิทยานิพนธ์ปริญญาวิศวกรรม, สถาบันวิศวกรรมอุตสาหกรรมของไทย, วิศวกรรมศาสตร์, มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, หน้า 1-114.