Numerical investigation of thermal exchanges for a habitable enclosure in a desert region

Authors

  • OUDRANE ABDELLATIF University Center of Tissemsilt (CUT), Road of BOUGARA, Ben Hamouda, 38004, Tissemsilt (Algeria).

Keywords:

Radiation, Habitable enclosure, Nodal method, Thermal exchange, Finite Difference method, ADRAR.

Abstract

The main objective of this work is to study the thermal exchanges in order to optimize the solar contributions in a habitable enclosure located in a desert region of Algeria (ADRAR). This latter is considered as an air volume of parallelepiped shape limited by horizontal and vertical flat walls, which are the only capacitive elements of the enclosure. They are thermally coupled by conduction, convection and radiation. The external facades of the enclosure are the seat of a convective flux with the external air and radiative exchanges with the environment (ground and sky). Openings (cracks, sealing defects, infiltration orifices, renewal orifices, etc.) allow the air to circulate inside the habitable enclosure and between the inside and the outside. Thermal exchanges are studied using the balance equations established at each wall of the enclosure. These equations are discretized by an implicit finite difference method. The system of algebraic equations thus obtained is solved by the Gauss algorithm using the nodal method. The effects of the outdoor ambient temperature, the density of the incident solar flux and the orientation of the habitable enclosure on the temperatures distributions are analyzed. The evolution of the internal ambient temperature as a function of the wind exposure factor and the degree of leak tightness of the doors and windows is also highlighted at the end of this work. An acceptable agreement was found between the numerical results and those measured by the radiometric station of the ADRAR Saharan Renewable Energy Research Unit. Moreover, the results obtained show that the building material used in this region is the cause of undesirable overheating due to its thermal inertia.

Author Biography

OUDRANE ABDELLATIF, University Center of Tissemsilt (CUT), Road of BOUGARA, Ben Hamouda, 38004, Tissemsilt (Algeria).

Department of Mechanical Power Engineering at Tissemsilt University Center in Algeria

References

I. Traore, Transferts de chaleur et de masse dans les parois des bâtiments à ossature bois, Thèse de doctorat de l’Université Henri Poincaré – Nancy Université en Mécanique et Energétique, 2011, ch. 1.

G. Lefebvre, Comportement thermique dynamique des bâtiments: simulation et analyse, Techniques de l’Ingénieur, traité Génie énergétique, Paris-CENERG, B 2 041-1, pp.9-10.

S. Jiang, C. Grey, Wouter Poortinga and Chris Tweed, ‘’Winter Indoor Air Temperature and Relative Humidity in Hard-To-Heat, Hard-To-Treat Houses in Wales: Results from a Household Monitoring Study’’, WSA Working Paper Series, ISSN 2050-8522, pp. 05-48, March 2015.

S. Ferrari, V. Zanotto, ‘’The thermal performance of walls under actual service conditions: Evaluating the results of climatic chamber test’’, Construction and Building Materials, vol. 43, pp. 309-316, February 2013.

E. Wurtz, Modélisation tridimensionnelle des transferts thermiques et aérauliques dans le bâtiment en environnement orienté objet, Thèse de doctorat Ecole Nationale des Ponts et Chaussees, 2010, ch.1.

M. Papalardo, Amélioration énergétique des bâtiments existants, ADEME Editions et Fédération Française du Bâtiment, 1 vol., 2004, pp.27-107.

J. Berger, Contribution à la modélisation hygrothermique des bâtiments: Application des méthodes de réduction de modèle, Thèse de docteur de l’université de Grenoble, Spécialité: Génie Civil et Sciences de l’Habitat, 2014, Ch.1.

M. Madaci, D. Kerdoun, ‘’Case Study of a Solar Pumped Storage Prototype Station Implementation Designed for the Region of Ghardia’’, International journal of renewable energy research, vol.6 (2), pp.435-446, May 2016.

H. Othieno, J. Awange, Energy resources in Africa: Distribution, Opportunities and Challenge, Springer International Publishing, Switzirland, 2016, pp.193-221.

S. Bentouba, “L’énergie renouvelable en Algérie et l’impact sur l’environnement”, Journal of Scientific Research, Université de Bechar, vol. 1, pp.50-54, November, 2010.

K.A., Antonopoulos E. Koronaki, "Apparent and effective thermal capacitance of buildings", Energy, vol. 23 (3), pp.183-192, March 1998.

F. Sebaa, Etude du potentiel éolien d’Adrar Sélection de sites pour la ferme éolienne de 10 MW, Revue des Energies Renouvelables, pp. 295-300, April 2010.

ENERMENA High Precision Meteorological Station of Research Unit for Renewable Energies in the Saharan Environment in ADRAR, Algeria, 2014.

A. Oudrane, B. Aour, M. Benhamou, ‘’Analyse de l’effet de l’épaisseur de la dalle chauffante sur l’effecacité thermique d’une installation de plancher solaire direct (PSD) implantée à ADRAR’’, African Review of Science, Technology and Development, vol. 01(01), pp. 26-41, January 2016.

A. Oudrane, B. Aour, M. Hamouda, M. Benhamou, ‘’Méthodologie pour la détermination de l’écartement optimal de la chaine tubulaire d’une dalle chauffante’’, Revue des Energies Renouvelables, vol. 19(01), pp. 11-19, Mars, 2016.

S. Bekkouche, T. Benouaz and A. Cheknane, ‘’A modelling Approach of Thermal Insulation Applied to a Saharan Building’’, Thermal Science, No. 4, vol. 13, pp. 233-244, October 2009.

Liu, B.Y.H and Jordan, R.C., “The interrelationship and characteristics distribution of direct, diffuse and total solar radiation”. Solar Energy. 4(3). pp.1-19, July,1960.

G.S. Campbell, J.M. Norman, An Introduction to Environmental Biophysics, 2nd Edition, Springer Verlag, Berlin, Heidelberg, New York Journal of Plant Physiology, Volume 155, Issue2, 1999, Page 296, August, 1998.

A. Oudrane, B. Zeghmati, X. Chesneau, B. Aour B., ‘’Modélisation du bilan radiatif et énergetique d’un habitat situé dans la region d’ADRAR’’, Recueil de Mécanique, vol. 2, pp. 79-87, Févier 2016.

K. Mansatiansin, Modélisation et simulation des transferts et de l’éclairement dans un habitat bioclimatique, Thèse de doctorat en sciences de l’ingénieur, spécialité mécanique énergétique, Université de Perpignan, 2005, ch.2.

D.M. Whaley, W.Y. Saman, A.T. Alemu, ‘’Integrated Solar Thermal System for Water and Space Heating, Dehumidification and Cooling’’, Energy Procedia Vol.57, pp. 2590 – 2599, October 2014.

M. Daguenet, Les Séchoirs Solaires, Théorie et Pratique, Editions Unesco, Paris, 1985, pp. 81-106.

N. Boulfaf, J. Chaoufi, A. Ghafiri, A. Elorf, ‘’Thermal Study of Hybrid Photovoltaic Thermal (PV-T) Solar Air Collector Using Finite Element Method’’, International Journal of Renewable Energy Research, Vol. 6(1), pp. 171-182, February 2016.

M. Boukli, ‘’Thermal requirements and temperatures evolution in an ecological house’’, Energy Procedia, vol. 6, pp. 110-121, December 2011.

S. Robelison, ‘’Influence thermique de l’emplacement du toit en chaume sous le toit en tôle d’un habitat à Antananarivo-Madagascar’’, Afrique SCIENCE, vol.04(3), pp. 318-338, ISSN 1813-548X, 2008.

Downloads

Published

2018-01-16

How to Cite

ABDELLATIF, O. (2018). Numerical investigation of thermal exchanges for a habitable enclosure in a desert region. Journal of Renewable Energy and Smart Grid Technology, 12(2), 87–105. Retrieved from https://ph01.tci-thaijo.org/index.php/RAST/article/view/92746