Thoracic cord compression by solitary osteochondroma

Verajit Chotmongkol, M.D.*, Banchong Mahatsavarya, M.D.**, Benjaporn Nitnavakhorn, M.D.***, Anucha Puapairoj, M.D.****

*Department of Medicine
**Department of Orthopaedics
***Department of Radiology
****Department of Pathology
Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

The most common form of primary extradural spinal cord tumor in adults is chordomas and sarcomas. Involvement of the spinal cord from vertebral osteochondroma is indeed rare. Ladpip reported 90 cases of spinal cord tumors and osteochondroma was not found. The serious neurological manifestation of vertebral osteochondroma is spinal cord compression and usually presents with slow progression of motor and sensory deficits (Table 1). We report a patient with thoracic osteochondroma who presented with sudden onset of paraplegia.
CASE REPORT

A 72-year-old woman was admitted to the Srinagarind Hospital because of weakness and numbness of both legs. She had been in good health before this illness. About three weeks before admission, she developed sudden onset of weakness of both legs which flipped her to the floor while she was walking. There were no back pain and disturbance of sphinctor function. These symptoms were stable until admission. No significant familial histories were noted.

On physical examination, she was alert. Her temperature was 36.7°C, blood pressure was 100/60 mmHg, respiration rate was 18/min and pulse rate was 80/min. Examination of vertebral column was unremarkable and no back tenderness. Neurological examination revealed hyperreflexic spastic paraplegia, predominate on the left, with bilateral Babinski’s response. Loss of pin prick sensation below the level of T12 and joint position sensation of both feet were noted. The anal sphinctor tone was normal. The other findings were unremarkable.

Laboratory tests including complete blood count, blood chemistry, urine analysis, VDRL and cerebrospinal fluid analysis were normal. Chest X-ray was normal and thoraco-lumbar spine showed evidence of lumbar spondylolisthesis. Myelography was performed through the L5 puncture and showed evidence of extradural defect upon left side of T10-11 with nearly complete obstruction. Electrisic spinal cord compression at T10-11 was diagnosed and operation was then performed.

Operative finding revealed that the spinal cord was compressed by bone mass, size 1 cm. in diameter, which extended from the left pedicle of T11. Total laminectomies of T10,11 was performed and bone tumor was removed.

Microscopic examination of bone tumor was compatible with osteochondroma (Fig. 1). The post operative course was uncomplicated. Her muscle power was slightly improved.

Figure 1. Section revealed that the tumor composed of trabeculae of mature bone (left) and an outer of cartilage (right). (H & E X 400)

DISCUSSION,

Osteochondroma is the most common form of the benign bone tumors(6,9). It can be classified into two groups: solitary and multiple osteochondroma(10). The latter has numerous osteochondromas affecting many bones and is a much smaller group of patients, about 10% of cases(10,10). Also, multiple osteochondromas usually have a strong familial tendency (Hereditary multiple exostosis) which transmitted by a single autosomal dominate gene and the incidence of development of secondary chondrosarcoma is higher, probably more than 10 percent(10).

Osteochondromas can be found in all age groups and sexes, predominate in males. Approximately 49-60 percent of cases were less than twenty years of age at the time of excision of their tumors(6,10).

Osteochondromas may occur on any bone that develops by enchondral ossifica-
tion. They usually occur in the metaphysical region of the long bone of the limbs but rarely occur at the spine. Dahlin reviewed 516 solitary lesions of this tumor and found only 17 cases (3.2%) at the spine. Sampatanakul reported 78 cases of osteochondromas and was not found this tumor at the spine.

The patients' symptoms are related to the size and location of the tumor. The complaint of a hard swelling, usually of long duration, is the most common. Spinal cord compression is rarely occurred.

Spinal osteochondroma can be found in all parts of the spine and the serious complication is spinal cord compression. Both motor and sensory defects are usually presented on initial examination and slow or slowly progression. The optimal treatment is laminectomy and excision of the tumor which gives a good recovery of neurological deficit.

Our patient demonstrated four unusual presentations of solitary osteochondroma. First, she was an old female. Second, she had a solitary osteochondroma of T11. Third, she was developed spinal cord compression from this tumor. Lastly, her symptoms presented with sudden onset of neurological deficits which its pathophysiology may be from vasculopathy secondary from pressure effect of tumor compression. Then osteochondroma should be aware in the case of sudden onset of spinal cord compression.

SUMMARY

A 72-year-old woman with sudden onset of weakness and numbness of lower extremities was reported. Myelography demonstrated extradural compression of T10-T11. Operative finding revealed spinal cord compression by bone tumor which extended from the pedicle of T11. Microscopic examination of tumor was compatible with osteochondroma. This rare tumor should be considered in the patient with sudden onset of spinal cord compression.

REFERENCES

<table>
<thead>
<tr>
<th>Author</th>
<th>Age</th>
<th>Sex</th>
<th>Level</th>
<th>Duration of Symptoms</th>
<th>Signs and Symptoms</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reid</td>
<td>30</td>
<td>M</td>
<td>C₂</td>
<td>7 mos</td>
<td>sensory</td>
<td>None</td>
<td>Death</td>
</tr>
<tr>
<td>Ochsner and Rothstein</td>
<td>23</td>
<td>M</td>
<td>C₂</td>
<td>6 yrs</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Slight</td>
</tr>
<tr>
<td>Slepian and Hamby</td>
<td>23</td>
<td>M</td>
<td>C₉</td>
<td>9 mos</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Improvement</td>
</tr>
<tr>
<td>Cannon</td>
<td>23</td>
<td>F</td>
<td>T₁₀</td>
<td>1 yr</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
<tr>
<td>Larson and associates</td>
<td>30</td>
<td>M</td>
<td>T₄</td>
<td>18 mos</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
<tr>
<td>Morin</td>
<td>24</td>
<td>F</td>
<td>T₄</td>
<td>3 mos</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Not recorded</td>
</tr>
<tr>
<td>Decker and Wei</td>
<td>15</td>
<td>M</td>
<td>T₁₁₋₁₂</td>
<td>1 mo</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
<tr>
<td>Carmel and Cramer</td>
<td>13</td>
<td>F</td>
<td>C₂</td>
<td>4 mos</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
<tr>
<td>Goldberg and associates</td>
<td>23</td>
<td>M</td>
<td>T₅₋₆</td>
<td>1 mo</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
<tr>
<td>Vistein and Franken</td>
<td>14</td>
<td>F</td>
<td>C₂</td>
<td>3-4 yrs</td>
<td>Motor</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
<tr>
<td>Madigan and associates</td>
<td>28</td>
<td>M</td>
<td>T₄</td>
<td>5 yrs</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
<tr>
<td>Loftus and associated</td>
<td>28</td>
<td>F</td>
<td>C₅₋₂</td>
<td>4 1/2 yrs</td>
<td>Motor and sensory</td>
<td>Laminectomy</td>
<td>Not recorded</td>
</tr>
<tr>
<td>Julien and associated</td>
<td>33</td>
<td>M</td>
<td>T₄</td>
<td>6 mos</td>
<td>Motor</td>
<td>Laminectomy</td>
<td>Good</td>
</tr>
</tbody>
</table>