A Morphological Study of Posterior Divisional Branches of the Mandibular Nerve in Embalmed Thai Cadavers

Jeerapat Singsorn¹, Porntip Boonruangsri¹, Kowit Chaisiwamongkol¹, Pipatphong Kanla¹,
Waranyoo Khonkankong¹, Yanyong Toomsan¹, Sithichai Iamsaard¹

¹Department of Anatomy, Faculty of Medicine, Khon Kaen University, Thailand
²Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Khon Kaen University, Thailand

Background and objective: The mandibular nerve branches (MNs) are the important nerves which supply structures in the infratemporal fossa and oral cavity. Clinically, the nerve variations must be aware before maxillofacial surgeries. This study aimed to investigate morphology of the MNs posterior division in embalmed Thai cadavers.

Methods: Seventy corpse halves heads of fifty-fifth embalmed Thai cadavers were carefully dissected to observe the morphology of the MNs posterior division.

Results: The results shown that the distances from mesial and distal lower second molar to the LN were approximately 11.16 ± 2.78 and 11.16 ± 2.48 mm., respectively. Three distances between LN and inferior angle of lateral pterygoid plate, intersection point between inferior angle of lateral pterygoid plate and bifurcation of the LN and IAN were 7.52 ± 2.57, 10.71 ± 3.38 mm., and distance between bifurcation of the LN and IAN to foramen ovale (FO) was 11.60 ± 4.12 mm. This study found that two types of LN and IAN bifurcation, type I: 95.71 % and type II: 4.29 %. There were five types of communication between MNs posterior division and type I (LN and IAN) was mostly found (10%) in this study.
Introduction

The mandibular nerve and its branches are branches of the trigeminal nerve. These nerves supply the areas of the infratemporal fossa (ITF) and oral cavity. The variations of these nerves have been reported among different races. Clinically, the complications of the MNs are considered during dental procedures such as LN palsy, paresthesia, dysesthesia, gustatory dysfunction, and loss of sensation. Thus, the surgeons must be aware of the variations of these nerves during maxillofacial surgeries. The variant MNs such as the communication between MNs especially the bifurcation between the LN and IAN have been reported in many races. However, there were few only reports in Thai population. This study aimed to investigate the morphology of MNs posterior division in embalmed Thai cadavers.

Materials and Methods

Materials

This study was performed in 70 corpse halves heads of fifty-fifth embalmed Thai cadavers (range = 45 – 87 years old and mean age = 62.28 years) perfused with formaldehyde fixative. The specimens were performed in gross anatomy laboratory room, department of Anatomy, faculty of Medicine, Khon Kaen university.

Methods

In all specimens, the heads were opened by using a high speed drill and a rongeur in midsagittal line. The specimens were dissected from medial to lateral aspects. At the lower second molar region, specimens were carefully dissected to measure the distances from lower second molar (mesial and distal aspect) to LN in vertical line (Fig.1). The medial pterygoid muscle (Mpt) was reflected to identify MNs posterior division and measure the distance between LN and the associate structures in the ITF area. The lateral pterygoid muscle (Lpt) was removed to observe the furcating patterns of the LN and IAN. Three measurements were then performed; 1) Between the inferior angle of lateral pterygoid plate to LN in the horizontal direction, 2) Intersection point between the inferior angle of lateral pterygoid plate and bifurcation of the LN and IAN, and 3) Between the bifurcation of LN and IAN to FO on the base of skull.

The furcating patterns of the LN and IAN were classified into four types as Kim et al and the landmarks were referenced to imagine horizontal line which was bisected the distance between the mandibular notch and the mandibular lingula.

The furcating patterns between LN and IAN were classified as follows; type I: bifurcation above the mandibular notch, type II: bifurcation in the upper half between the mandibular notch and the mandibular lingula, type III: bifurcation in the lower half between the mandibular notch and the mandibular lingula, and type IV: bifurcation present at the level of mandibular lingula. In addition, the communications between the MNs posterior division and the relationship among the IAN, inferior alveolar artery (IAA) and inferior alveolar vein (IAV) before entering to the mandibular foramen (MF) were observed.

Data Analysis

All measurements were performed by using digital calipers. The student’s t-test was applied for statistical significant differences (p< 0.05).

Conclusions: These results are the basic data that may be considered before maxillofacial operations and dental treatment.

Keywords: mandibular nerve branches posterior division, lingual nerve, inferior alveolar nerve, lower second molar
Results

Interestingly, this study was created the new distance measurement from lower second molar (mesial and distal aspects) to LN in vertical direction. Moreover, the new landmark of the inferior angle of lateral pterygoid plate was developed for distance measurement to LN in horizontal direction, and the intersection point between inferior angle of lateral pterygoid plate and bifurcation of the LN and IAN as shown in Fig. 2. The average distances between LN and the adjacent structures in the lower second molar and infratemporal regions were shown in table 1. Moreover, these results showed no statistical significance differences between LN and associate structures distances and genders.

In this study, the furcation patterns of the LN and IAN were only observed in type I [95.71% (67 sides)] (Fig. 3) and type II [4.29% (3 sides)] (Fig. 4).

In addition, this study was classified the communications of the MNs posterior division into five types as shown in Fig. 5. This study found that type I (10%): between LN and IAN, type II (1.42%): between LN and trunk of MN, type III (7.14%): between IAN and auriculotemporal nerve, type IV (1.42%): between LN and hypoglossal nerve, and type V (1.42%): between trunk of the mandibular nerve and chorda tympani, respectively.

Moreover, this study found that two types of the relationship among the IAN, IAA and IAV (from anteroposterior) before entering to the MF. There were type I (IAN, IAA and IAV = 97.11%) and type II (IAA, IAN and IAV= 2.89%).

Discussions

The relationship of anatomical structures in the ITF makes any procedures executed in this region very complex. Moreover, differences in these average measurements show a clear distinction between races. The average distance between the bifurcation of LN and IAN to FO in this study (11.6 ± 4.12 mm.) was shorter than the study of Kim et al.

In the textbooks of anatomy, generally, describe that the LN runs in a course and divides from the mandibular nerve above mandibular notch. In this study, the LN and IAN bifurcated above the mandibular notch (type I) in 65.6% of cases. In the others, the bifurcation was located at the upper half of the mandibular ramus between the mandibular notch and mandibular lingula (type II) in 4.29% of case. In this study, type I of the furcation patterns of the LN and IAN was mostly found which was similar to other reports in Korean and Turkish.

Table 1 Showing the distances between LN, bifurcation of the LN and IAN and the adjacent structures

<table>
<thead>
<tr>
<th>The distances between LN and adjacent structures</th>
<th>Average distances (mm.)</th>
<th>Right side</th>
<th>Left side</th>
<th>Both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesial aspect of lower second molar to the LN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>12.04 ± 3.08</td>
<td>11.09 ± 2.29</td>
<td>10.17 ± 1.89</td>
<td>11.28 ± 2.76</td>
</tr>
<tr>
<td>Female</td>
<td>11.68 ± 3.22</td>
<td>10.77 ± 1.85</td>
<td>11.16 ± 1.73</td>
<td>10.87 ± 1.84</td>
</tr>
<tr>
<td>Distal aspect of lower second molar to the LN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior angle of lateral pterygoid plate to LN</td>
<td>7.55 ± 3.13</td>
<td>7.59 ± 1.92</td>
<td>7.31 ± 1.90</td>
<td>7.66 ± 2.65</td>
</tr>
<tr>
<td>Male</td>
<td>10.15 ± 2.84</td>
<td>9.99 ± 3.06</td>
<td>12.38 ± 3.73</td>
<td>10.58 ± 3.65</td>
</tr>
<tr>
<td>Inferior angle of lateral pterygoid plate to LN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior angle of lateral pterygoid plate to intersection point between inferior angle of lateral pterygoid plate and bifurcation of the LN and IAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10.15 ± 2.84</td>
<td>9.99 ± 3.06</td>
<td>12.38 ± 3.73</td>
<td>10.58 ± 3.65</td>
</tr>
<tr>
<td>Bifurcation of LN and IAN to FO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10.15 ± 2.84</td>
<td>9.99 ± 3.06</td>
<td>12.38 ± 3.73</td>
<td>10.58 ± 3.65</td>
</tr>
</tbody>
</table>
Figure 1 Showing the distance measurements from lower second molar (mesial and distal aspect) to LN in vertical line; LN = lingual nerve, A and C = mesial and distal aspect of lower second molar, B and D = superior margin of the LN, Sup’ = superior, Inf’ = inferior, Ant’ = anterior, Post = posterior.

Figure 2 Showing three distance measurements; the distance from inferior angle of lateral pterygoid plate (F) to LN (E) in the horizontal direction (2A), the distance from inferior angle of lateral pterygoid plate (F) to intersection between inferior angle of lateral pterygoid plate and bifurcation of the LN and IAN (G) in vertical direction (2B), and the distance from the bifurcation of LN and IAN (H) to FO (I) (2C).

LN = lingual nerve, IAN = inferior alveolar nerve, MHN = mylohyoid nerve, ATN = auriculotemporal nerve, MA = maxillary artery, MMA = middle meningeal artery, E = anterior margin of LN, F= inferior angle of lateral pterygoid plate, G= intersection between inferior angle of lateral pterygoid plate and bifurcation of the LN and IAN, H = bifurcation of the LN and IAN, I = foramen ovale (FO), Sup’ = superior, Inf’ = inferior, Ant’ = anterior, Post = posterior.
In this study, five categories of variations in communication between the MNs were investigated. Type I: the communication between the LN and IAN was identified in seven specimens (10%). Type II (1.42%): between LN and trunk of MN, type III (7.14%): between IAN and auriculotemporal nerve, type IV (1.42%): between LN and hypoglossal nerve, and type V (1.42%): between trunk of the mandibular nerve and chorda tympani, respectively. The existence of communication between MNs might help in the recovery other MNs injury by contributing to additional sensory innervations of their structures.

Conclusion

The anatomical variations were assumed a possible cause of complications during surgical procedures. We believe that the distribution and communication patterns of MNs posterior division, as clarified by this study, will provide a useful reference for clinical applications and surgical procedures.

Acknowledgements

We would like to special thank for faculty of Medicine research grant, Khon Kaen university for financial support (INS8129).
Figure 5 Showing the communication branches between LN and IAN (5A), trunk of the CN V3 and LN (5B), IAN and ATN (5C), LN and CN. XII (5D), and trunk of the CN.V3 and chorda tympani (5E); LN = lingual nerve, MHN = mylohyoid nerve, IAN = inferior alveolar nerve, ATN = auriculotemporal nerve, MA = maxillary artery, MMA = middle meningeal artery, MPt. = medial pterygoid muscle, LPt. = lateral pterygoid muscle, CN. V3 = mandibular nerve, CN. XII = hypoglossal nerve

References

