Dynamic Elastic Properties Measurement in Solid Materials
by Impulse Excitation Technique

กำรวัสดุสมบัติอิทุมของวัสดุของแข็ง
โดยเทคนิคกระตุ้นแบบการผล

Wiwat Nuansing (วิวัฒน์ นวลสิงห์)*
Dr. Santi Maensiri (ดร. สันติ แมนศิริ)**

Abstract

The theory of elastic properties of a solid material was studied. The instrument based on an
impulse excitation technique was designed and constructed to measure the elastic properties of solid
materials (i.e. alumina, aluminum and copper). In addition, the program IEkku 1.0 has been built to
calculate Young’s modulus, shear modulus, and Poisson’s ratio of the materials. The program was
effectively used for the calculation of the elastic properties of the alumina materials, and is comparable
to the standard program, the EMOD V1.7 program (J. W. Lemmens, Leuven, Belgium). The in-house
instrument can be used for the frequency in the range of 0 kHz to 23 kHz, and it was successfully
used to measure the elastic properties of aluminum and copper with the error of 1 - 3 %.

บทคัดย่อ

ได้ศึกษาสมบัติของสมบัติอิทุมของวัสดุของแข็งและทำการออกแบบสร้างเครื่องมือโดยใช้
technique of elastic properties of a solid material. The instrument based on an
impulse excitation technique was designed and constructed to measure the elastic properties of solid
materials (i.e. alumina, aluminum and copper). In addition, the program IEkku 1.0 has been built to
calculate Young’s modulus, shear modulus, and Poisson’s ratio of the materials. The program was
effectively used for the calculation of the elastic properties of the alumina materials, and is comparable
to the standard program, the EMOD V1.7 program (J. W. Lemmens, Leuven, Belgium). The in-house
instrument can be used for the frequency in the range of 0 kHz to 23 kHz, and it was successfully
used to measure the elastic properties of aluminum and copper with the error of 1 - 3 %.

Key words: Elastic properties, impulse excitation technique, material characterization.

คำสำคัญ: สมบัติอิทุม เทคนิคกระตุ้นแบบการผล การวิเคราะห์วัสดุ
Introduction

The instrument in this study, based on the impulse excitation technique (ASTM C 1259-98, 1999), was constructed. In principle, the impulse excitation technique measures the fundamental resonant frequency of test specimens of suitable geometry (for example, rectangular or disc specimens) by exciting them mechanically by a single elastic strike with an impulse tool. A transducer (for example, contact accelerometer or non-contacting microphone) senses the resulting mechanical vibrations of the specimen and transforms them into electrical signals. Specimen supports, impulse locations, and signal-pick up points are selected to induce and measure specific modes of the transient vibrations. The signals are analyzed, and the fundamental resonant frequency is isolated and measured by a signal analyzer. A transducer is used to pick up mechanical vibration. The analogue signal from the vibration detector is first fed to a two-stage linear amplifier. A zero crossing detector marks off the signal periods. As soon as the peak detector senses that the incoming signal has started to decay, the successive period measurements commence. The instrument records all available periods and stores the results in the microprocessor memory for further analysis. The test apparatus constructed and used in this study is shown in Fig. 1. The appropriate fundamental resonant frequencies, dimensions, and density of the specimen are used to calculate the elastic properties of materials i.e. dynamic Young’s modulus (E), dynamic shear modulus (G), and Poisson’s ratio (V).

Methodology

In this study, we develop the program IEkkku 1.0 to use for this purpose. In this study, two types of specimen shapes were used: rectangular bar (i.e. aluminum and copper) and disc (i.e. alumina).

The dynamic Young’s modulus, E could be determined from the rectangular bar specimens, according to the following equation [2, 3]:

\[E = (0.94642 \rho f_f^2 L^4 t^2)A_f \]

(1)

where \(f_f \) is the fundamental resonant frequency (flexure mode) of a rectangular bar, \(L \) is the length, \(t \) is the thickness, \(\rho \) is the density of the specimen, and \(A_f \) is a correction factor to account for inertia effects. For a disc specimen, it could easily be excited into different modes, in particular the fundamental frequencies from flexural mode and torsional mode vibrations are of interest here as each of these two frequencies are used in the calculation of \(E, G \) and \(V \). The detail of how to get the vibration modes for a rectangular bar specimen and for a disc specimen can be obtained elsewhere (ASTM C 1259-98, 1999).

There are three main steps for the calculations of \(E, G \) and \(V \):

Step 1: Determine \(V \) from the experimental values for flexural resonant frequency \((f_f) \) and torsional resonant frequency \((f_t) \). This is done by the use of the standard table [4] in which the value for \(n \) is interpolated from the table using the ratio of torsional resonant frequency to flexural resonant frequency \((f_t/f_f) \) correlated with the ratio of the specimen thickness \((t) \) to the specimen radius \((R) \).

Step 2: Calculate two independent values for \(E (E_1 \text{ and } E_2) \) using \(V \) from step (1), \(f_f \) and \(f_t \).
Determine E as the average of the two independent calculations. Here E_1 and E_2 are expressed as follows:

$$E_1 = 37.6991f_1^2D^2m(1-v^2)/K_1^2t^3,$$
$$E_2 = 37.6991f_2^2D^2m(1-v^2)/K_2^2t^3,$$
$$E = (E_1 + E_2)/2,$$

where E is Young’s modulus, E_1 flexural mode calculation of Young’s modulus, E_2 torsional mode calculation of Young’s modulus, f_1 flexural resonant frequency of the disc, f_2 torsional resonant frequency of the disc, D diameter of the disc, m mass of the disc, V Poisson’s ratio,

t the thickness of the disc and K_1, K_2 are the flexural geometric factor and torsional geometric factor, respectively (ASTM C1259-98).

Step 3: Calculate the value of G using V from step (1) and E from step (2): $G = E/2(1+V)$.

All of these procedures for the calculations of E, G and V for a rectangular and a disc specimen were included in the IEKKU 1.0 program. To test the accuracy of the program, the data taken from the test on alumina are entered into the program and compared to the results obtained from the commercial software, the EMOD Version 1.7 program supplied by J. W. Lemmens, Leuven, Belgium. Fig. 2 shows the window display of the IEKKU 1.0 program.

Table 1

<table>
<thead>
<tr>
<th>Material</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Copper 1</td>
<td></td>
</tr>
<tr>
<td>Copper 2</td>
<td></td>
</tr>
<tr>
<td>Copper 3</td>
<td></td>
</tr>
</tbody>
</table>

By it was found 1.0 program measurement
Table 1 The elastic properties of aluminum and copper measured by the in-house impulse excitation system in association with the IEkku 1.0 program.

<table>
<thead>
<tr>
<th>Material</th>
<th>Dimension (mm3)</th>
<th>Mass (g)</th>
<th>f_1 (flexure) (kHz)</th>
<th>f_2 (torsion) (kHz)</th>
<th>E (GPa)</th>
<th>G (GPa)</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum 1</td>
<td>49.82x71.98x3.00</td>
<td>28.38</td>
<td>3.00</td>
<td>2.61</td>
<td>67.8</td>
<td>26.2</td>
<td>0.30</td>
</tr>
<tr>
<td>Aluminum 2</td>
<td>49.58x99.52x3.00</td>
<td>39.14</td>
<td>1.58</td>
<td>1.88</td>
<td>68.5</td>
<td>25.8</td>
<td>0.33</td>
</tr>
<tr>
<td>Aluminum 3</td>
<td>49.48x149.52x3.00</td>
<td>58.65</td>
<td>0.70</td>
<td>1.24</td>
<td>68.2</td>
<td>25.2</td>
<td>0.35</td>
</tr>
<tr>
<td>Copper 1</td>
<td>42.70x72.12x1.00</td>
<td>26.87</td>
<td>0.74</td>
<td>0.75</td>
<td>122.5</td>
<td>47.2</td>
<td>0.30</td>
</tr>
<tr>
<td>Copper 2</td>
<td>46.50x100.68x1.00</td>
<td>40.32</td>
<td>0.39</td>
<td>0.51</td>
<td>127.9</td>
<td>49.9</td>
<td>0.28</td>
</tr>
<tr>
<td>Copper 3</td>
<td>46.12x151.35x1.00</td>
<td>61.19</td>
<td>0.17</td>
<td>0.33</td>
<td>125.9</td>
<td>47.3</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Results and discussion

By using alumina as a standard material, it was found that the calculation using the IEkku 1.0 program gives a good result and the measurement errors compared to that of using the EMOD V.1.7 for the Young’s modulus, shear modulus and Poisson’s ratio are 0.09%, 0.17%, and 0.69%, respectively. Therefore, the program was effectively used for the calculation of the
elastic properties of the alumina materials. Young's modulus (E), shear modulus (G), and Poisson's ratio (V) of the aluminum and copper measured by the impulse excitation are shown in Table 1. The Young's modulus, shear modulus and Poisson's ratio of aluminum are respectively 68.2 ± 0.4, 25.7 ± 0.5, and 0.33 ± 0.03, while the Young's modulus, shear modulus and Poisson's ratio of copper are respectively 125.3 ± 2.6, 48.1 ± 0.5, and 0.30 ± 0.03. The measurement errors for E and G, compared to the standard values of both materials, are less than 3% but it is larger up to 12% for the error of V.

Conclusion

In this study, the instrument based on impulse excitation technique and the IEkku 1.0 program have been developed and successfully used to evaluate Young's modulus, shear modulus and Poisson's ratio of rectangular bar and disc specimens of solid materials such as aluminum and copper.

However, the instrument has the limit range in detecting the frequency of vibrations, and so far it can detect the frequency only in the range of 0 kHz to 23 kHz. Therefore, further work is needed to develop the system that can be used to detect a wider range of frequency, and this will increase the potential and efficiency of the instrument for measuring the elastic properties of various solid materials.

Acknowledgements

The authors would like to thank to the Development and Promotion of Science and Technology Talents Project (DPST) for financial support.

References

