Flash Visual Evoked Potentials in Normal Pomeranian Dogs and Those with Canine Cognitive Dysfunction

Thanawut Hamnilrat1,2 Chalermpol Lekcharoensuk4 Piyathip Choochalermporn3 Aree Thayananuphat4*

Abstract

Visual evoked potential (VEP) is a useful technique for evaluation of optic nerve pathway and diagnosis of human Alzheimer’s disease. Canine cognitive dysfunction (CCD) is an age-related neurobehavioural syndrome which is commonly underdiagnosed in dogs. In the present study, VEPs were recorded from 28 Pomeranian dogs including 9 normal dogs aged between 1-8 years, 9 normal dogs aged over 8 years, and 10 dogs with signs of CCD. Brain atrophy in 8 CCD dogs was confirmed by CT scan. The other two dogs with signs of CCD had tumor which was confirmed by CT scan and cerebrospinal fluid. The VEP components of dogs over and under 8 years old were not statistically different (p>0.05). P2 and P3 of the dogs with CCD were longer than those of the normal dogs (p<0.05). The VEPs in dogs with CCD and tumor had different patterns. In conclusion, VEP is a promising tool for the diagnosis of CCD in aging dogs.

Keywords: brain atrophy, cognitive dysfunction, dog, Pomeranian, visual evoked potential

1Center of Agriculture Biotechnology, Kasetsart University, Nakhon Pathom 73140, Thailand
2Center of Excellence on Agricultural Biotechnology; (AG-BIO/PERDO-CHE), Nakhon Pathom 73140, Thailand
3Kasetsart Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
4Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand
*Correspondence: fivetatr@ku.ac.th

Introduction

Canine cognitive dysfunction (CCD) or canine dementia is a neurobehavioural syndrome in aged dogs. This syndrome characterizes by deficit in several characteristics such as learning, memory and spatial awareness. Social interactions and sleeping patterns are possibly changed in CCD dogs (Landsberg et al., 2003). Several studies have identified CCD as a common problem in aged dogs. However, recent epidemiological surveys in the United States suggested that the disease was severely underdiagnosed with up to 85% of potentially affected animals failing to be identified (Salvin et al., 2010; Osella et al., 2007).

CCD shares several aspects with human dementia which include the progression of clinical syndrome (Cummings et al., 1996). CCD may, therefore, serve as a useful translational model for human dementia. However, the current major limiting factor for both research and community dog health is the absence of an evidence based tool for assessment and accurate monitoring of clinical progression or response to therapy.

Visual evoked potential (VEP), which indicates electrophysiological response from the retina to visual cortex, was reported as a useful technique for evaluation of optic pathway and also a sensitive indicator for human dementia, especially Alzheimer’s disease. A recent study indicated that dogs over 9 years old had prolonged latency of P2, N2 and P3 approximately 10% of normal physiological condition (Kimotsuki et al., 2006) and latency of dementia dogs might be above their normal physiological condition. Moreover, dementia problem in aging dogs may occur in old dogs with encephalitis and brain tumor which may result in different wave forms of VEPs. Therefore, the purpose of this study was to compare the VEP components of normal young and aging Pomeranian dogs with CCD Pomeranian dogs and investigate the VEP patterns in dogs with CCD and dogs with brain tumor.

Materials and Methods

Animals: Twenty-eight Pomeranian dogs were used in this study. All dogs had normal eye structure, vision and blood tests (CBC, BUN, creatinine, ALT). The samples consisted of 9 normal dogs at the age of 1-8 years old, 9 normal dogs at the age over 8 years, and 10 dogs with signs of CCD classified by modified DISHA questionnaire (CD5 checklist, Landsberg et al., 2012). Skull size was measured by vertical length (from nasion to occipital protuberance), and horizontal length (from both anterior ear lobes). All dogs with signs of CCD were further diagnosed by CT scan for their brain atrophy and other abnormalities. Cerebrospinal fluid was further collected after CT scan in dogs with signs of CCD and without brain atrophy from CT scan.

VEP Recordings: Flash VEPs were performed in a dark shield room. Needle electrodes (Platinum subdermal electrode; GRASS Technologies, An Astro-Med, Inc. Subsidiary: USA) were used to record responses. Areas for electrodes were prepared by 70% alcohol cleaning. Electrode impedances were kept below 5 kohm and difference of impedances between electrode sites did not differ by more than 20% to reduce electrical interference. The VEPs were recorded by a 3-channel electrode recording system. Electrodes of recording, reference and ground were placed over O1, O2, Oz (recording), Fpz (reference) and Cz (ground). All names and positions followed the 10-20 International system (Odom et al., 2010). Stimuli consisted of white flash light at a rate of 1/sec (1 Hz) with an intensity of 1 joule using Photic stimulator (SLE, CPS-20; Medilce Synergy, VIASYS, Medison, USA). A flash generator unit was held approximately 20 cm and 30 degree deviation from midline away from the eye. The contralateral eye was covered by a dark bandage during recordings. All dogs were sedated with 0.02 mg/kg dexmetomidine (Dexdometer; pfizer animal health, Orion Corporation; Espoo Finland) intravenously to restrain and avoid muscle artifact (Bekker et al., 2004).

Separate VEPs were taken from both eyes of each animal. An average of 30 responses were recorded and repeated 3 times for each eye to assess repeatability. Three average waveforms of 30 responses for each eye were composed of responses from O1, O2 and Oz followed by recording electrode. A bandpass filter was set at 1 Hz low and 100 Hz high. The responses were collected with a computer-based electrodiagnostic signal averaging system (Medilce-Synergy, VIASYS, Medison, USA). Measurements consisted of the latencies of each peak. Amplitudes were measured from peak to peak rather than from baseline to peak amplitude on conventional of previous studies to determine the influence of age and CCD (Kimotsuki et al., 2005).

CT scan: CT scan of the brain was performed in 10 dogs diagnosed with CCD from modified DISHA questionnaire. All CCD dogs received intravenously 0.02 mg/kg dexmetomidine for sedation and intravenously 10 mg/kg propofol for induction. The anesthesia was maintained with 2% isoflurane inhalation. All dogs with CCD signs were investigated by CT scan for their brain abnormality with 64-slice multidetector computed tomography (OPTIMA 660; GE Medical System, Milwaukee, WI) and a contrast study was conducted with intravenously Ioheoxel (300 mg iodine/cc) (Omnipaque; GE health care, AS Nycombe) 600 mg iodine/kg.

CSF analysis: Cerebrospinal fluid (CSF) was obtained from 10 dogs after CT scan. CSF was collected from the cerebellomedullary cistern with the site of collection clipped and aseptically prepared. Endotracheal tube was used to reduce the chance of tracheal tube kinking and the cuff was deflated to reduce tracheal trauma before neck flexion. One to two milliliter of CSF was immediately measured for CSF total protein (microalbumin) by a colorimetric method using ILab 650 analyzer (Instrumentation Laboratoty, USA) and total nucleated cell count (TNCC) by CELL-DYN 3700 (Abbott, USA). Slide preparations were performed by cytocentrifugation with Cytospin3 (Shandon, USA) at 550-700 rpm for 5 min depending on TNCC and stained with modified Wright’s Giemsa.
Data Analysis: Descriptive statistics consisting of the mean, standard deviation (SD), and range for each latency and amplitude measurements were calculated. One way ANOVA was used for testing statistical significance between the latency and amplitude of the components in VEP among the 3 groups. If a significance ($p<0.05$) was found, post hoc comparison with Tukey method was performed. Linear regression was also performed between the latency or amplitude of the components in VEPs and age. If the regression model was significant, values of the latency or amplitude of VEP components were proposed for detection of early CCD by substituting age (95% confidence) in the model with the value of mean age – 1.96 x SD.

Results

Of total 28 dogs, 16 (57%) were male and 12 (43%) were female. The mean body weight of all dogs was 3.6±1.22 kg (2.3–4.8 kg). The mean skull size of all dogs by vertical length was 8.3±0.65 cm (7.5–9 cm) and by horizontal length was 7.5±1 cm (6.5–8.5 cm). The group of dogs under 8 years consisted of 4 males and 5 females. The group of dogs over 8 years consisted of 4 males and 5 females. The group of dogs with signs of CCD consisted of 8 males and 2 females. The average ages of dogs under 8 years, over 8 years, and with CCD signs were 4.1±1.76 (1 to 8 years) years old, 10.6±2.18 (9 to 15 years) years old, and 13.6±2.18 (11 to 16 years) years old, respectively.

Eight out of ten dogs with signs of CCD had brain atrophy (Table 1). The CT scan images showed decrease in the frontal lobe brain volume and ventricular dilatation. The other two dogs had brain tumor by showing signs of leptomeningeal contrast enhancement and periventricular contrast enhancement following dye injection (Fig 1).

The flash VEP waveform consisted of 6 peaks. Negative peak troughs were labeled “N” and positive peak troughs were labeled “P”, followed by its sequence number (identified as N1, P1, N2, P2, N3 and P3). The amplitudes and latencies were measured from peak to peak (N1-P1, P1-N2, N2-P2, P2-N3, N3-P3). The Flash VEP waveform in this study started from the first negative peak N1 similar to human protocol (Odom et al., 2010).

The VEP components of the Pomeranians under and over 8 years old had no significant difference (Table 3). Aging in Pomeranians might insignificantly cause mild prolonged latencies and decreased amplitudes. The Flash VEP waveform pattern of the CCD dogs had a similar pattern to that of the normal dogs. The VEP components in the CCD dogs had prolonged latencies of P2 ($p<0.05$) and P3 ($p<0.05$) compared to those of the normal aging dogs (Fig 3). Dogs number 9 and 10, which were diagnosed with brain tumor, were excluded from the group of CCD in order to calculate the mean of latency and amplitude. The flash VEP waveform pattern of the dogs with brain tumor were obviously different from the VEP patterns in the normal and CCD dogs (Fig 2).

From regression analysis, the equation of P2 was 51.46 + (2.53 x age) and P3 was 154.59 + (3.93 x age). From this equation and the data of mean age - 1.96 x SD (= 9.33 years) may predict that P2 might be 75.06 msec and P3 might be 191.25 msec for detecting of early CCD (Fig 4).
Table 1 Clinical signs of CCD from DISHA questionnaire

<table>
<thead>
<tr>
<th>Dog number</th>
<th>Sign</th>
<th>Sex</th>
<th>Age</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decreased recognition of family and pets/ decreased playing/ increased day time sleeping</td>
<td>Male</td>
<td>14</td>
<td>Mild CCD</td>
</tr>
<tr>
<td>2</td>
<td>Decreased recognition of family and pets/ increased reaction to auditory and visual stimuli/ increased day time sleeping/ licking air</td>
<td>Male</td>
<td>14</td>
<td>Mild CCD</td>
</tr>
<tr>
<td>3</td>
<td>Decreased recognition of family and pets/ decreased playing/ increased day time sleeping</td>
<td>Male</td>
<td>16</td>
<td>Mild CCD</td>
</tr>
<tr>
<td>4</td>
<td>Decreased recognition of family and pets/ decreased playing/ increased day time sleeping</td>
<td>Female</td>
<td>12</td>
<td>Mild CCD</td>
</tr>
<tr>
<td>5</td>
<td>Decreased socialization/ decreased response to commands/ altered relationship with people/ eliminate in sleeping area</td>
<td>Male</td>
<td>15</td>
<td>Mild CCD</td>
</tr>
<tr>
<td>6</td>
<td>Decreased socialization/decreased response to commands/ altered relationship with people/ decreased signaling/ increased appetite</td>
<td>Female</td>
<td>15</td>
<td>Mild CCD</td>
</tr>
<tr>
<td>7</td>
<td>Decreased greeting behavior/ food dropping/ aimless wandering/ separate anxiety/ walking at night/ separation/ decreased response to familiar commands</td>
<td>Male</td>
<td>12</td>
<td>Moderate CCD</td>
</tr>
<tr>
<td>8</td>
<td>Increased day time sleeping/ walking at night/ aimless wandering/ decreased greeting behavior/ separation/ decreased response to commands</td>
<td>Male</td>
<td>11</td>
<td>Moderate CCD</td>
</tr>
<tr>
<td>9</td>
<td>Decreased recognition of familiar people/ getting struck/ decreased response to auditory and visual stimuli/ avoiding contact/ altered relationship with people/ walking at night/ aimless wandering/ decreased play/ vocalization/ separation/ decreased response to familiar commands</td>
<td>Male</td>
<td>14</td>
<td>Brain Tumor</td>
</tr>
<tr>
<td>10</td>
<td>Decreased recognition of familiar people/ getting struck/ avoiding contact/ altered relationship with people/ walking at night/ aimless wandering/ decreased playing/ vocalization/ separation/ decreased response to familiar commands</td>
<td>Male</td>
<td>11</td>
<td>Brain Tumor</td>
</tr>
</tbody>
</table>

Table 2 CSF analysis result from dogs diagnosed with brain tumor (*TNCC: total nucleated cell count)

<table>
<thead>
<tr>
<th>Dog number</th>
<th>TNCC*(cell)</th>
<th>CSF protein (g/dL)</th>
<th>Cytological findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>13</td>
<td>28</td>
<td>Some lymphocyte and scattered macrophages, cluster of plexus cells effected by cell degenerative change</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>36</td>
<td>Some neutrophils, lymphocytes, macrophages, fat eating macrophages and myelin figure large lymphoid cell</td>
</tr>
</tbody>
</table>

Table 3 Average (SD) latencies and amplitudes of normal dogs under 8 years old, normal dogs over 8 years old and CCD dogs

<table>
<thead>
<tr>
<th>Group</th>
<th>Latency (msec)</th>
<th>Amplitude (microvolt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
<td>P1</td>
</tr>
<tr>
<td>< =8 year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.46)</td>
<td>(1.80)</td>
</tr>
<tr>
<td>>8 year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.04)</td>
<td>(2.04)</td>
</tr>
<tr>
<td>CCD</td>
<td>2.87</td>
<td>18.21</td>
</tr>
</tbody>
</table>

* represents significant difference (p<0.05, Tukey post hoc comparison).

Discussion

A previous study in dogs reported that the first peak was the positive peak (P1) and the first negative peak (N1) was labeled after P1 (Strain et al., 1999). In that study, VEPS were recorded after flash stimulation for 15 msec. The first negative peak (N1) latencies normally were 6-9 msec after stimuli. In contrast, this study recorded VEPS after the flash stimulation for 5 msec. Because this study could detect the negative peak first, N1 was used as the first peak. However, in several human studies, N1 was reported as the first negative peak of the waveform which appeared prior to other peaks. In addition, N1 has been described as the retinal potential response which is important for evaluation of visual pathway (Celesia, 1998). Due to the capability to identify the negative peak prior to the positive P1 peak, we decided to follow the human pattern of the waveform by labeling the negative N1 prior to the positive P1 peak.

As the same physiology of vision, the flash VEP waveform pattern of dogs had the same pattern as...
human waveform. However, both latencies and amplitudes of VEP components of these two species are different. The reason is that VEP parameters are influenced by skull sizes and shapes (Gegori et al., 2006). The use of human pattern and nomenclature should be of benefit to further studies of CCD as a model for human dementia.

In the present study, the flash VEPs were effective to differentiate CCD from tumor by different patterns of waveform. Moreover, the latency of P3 showed high potential for identifying CCD in Pomeranian dogs at least until the age of 15. The latency of P2 was also different between the normal and CCD dogs, but it had less potential than the latency of P3. Twenty percent (2/10) of the dogs with CCD signs from the modified DISHA questionnaire were not eventually diagnosed with CCD. Using only DISHA questionnaire could mislead the diagnosis of brain tumor in some patients. CT scan and CSF analysis could provide further diagnosis of other intracranial problems. However, an early stage of brain tumor or even CCD might affect only their functions before structural change was noticeable and some structural change might not affect the clinical signs. In addition, meningeal calcification might be difficult to differentiate from meningeal tumor in some patients (Borras et al., 1999). Therefore, using VEP, which is a quick and noninvasive technique, would be useful to increase the accuracy for differentiation of CCD and other intracranial abnormalities such as tumor. Using VEPs for the diagnosis of an early stage of CCD may be beneficial for prolonged or return of the quality of life. Moreover, in a human study, the latency of P3 was found to correlate with clinical sign and stage of AD (Orwin et al., 1986). Using flash VEPs may be a useful technique to evaluate and follow the progression of CCD.

Figure 3 Box plots of average latency P2, N3 and P3 in 3 groups of dogs

In contrast, a previous study of Kimotsuki et al. (2006) stated that dogs at 9 years of age had latency of P2 and latter peaks more prolonged than dogs under 9 years. The breeds of dog might be a reason for this difference. Pomeranian is a small breed which usually has longer lifespan than the medium and large breeds. In addition, the differences in skull size and shape could affect the latency and amplitude of flash VEP waveform (Gegori et al., 2006). Due to the difference in the skull size and lifespan, VEPs of individual breed should be clarified for normal reference including the aging process.

In conclusion, VEPs of individual breed should be evaluated for a normal reference. Flash VEPs is a promising tool for the differentiation of CCD and brain tumor. VEPs for CCD might be a useful model for the study of human dementia.
Acknowledgements

The authors would like to thank Center for Agricultural Biotechnology, Kasetsart University and Center for Agricultural Biotechnology: (AG-BIO/PERDO-CHE) for financially supporting part of this study.

References

บทคัดย่อ
การตรวจวินิจฉัยด้วย Flash visual evoked potentials ในสุนัขปอมเมอเรเนียนที่ปกติและที่อยู่ในภาวะความจำเสื่อม

ธนวุฒิ เหมนิลรัตน์1,2 เฉลิมพล เล็กเจริญสุข4 ปิยทิพย์ ชูเฉลิมพล3 อารีย์ ทยานานุภัทร์4*

Visual evoked potential (VEP) เป็นเทคนิคการตรวจวินิจฉัยยังที่มีประโยชน์ในการประเมินการทำงานของเส้นประสาทตาและการวินิจฉัยโรค Alzheimer ในมนุษย์ การความจำเสื่อมในสุนัขเป็นกลุ่มอาการที่เกี่ยวข้องกับระบบประสาทที่ส่งผลต่อพฤติกรรมในสุนัขซึ่งสัมพันธ์กับอาการอายุ เสนอว่าการใช้เทคนิคนี้ในการวินิจฉัย อาการศักยภาพนี้ได้ทำการทดสอบด้วยการตรวจ VEP ในสุนัขทั้งหมด 28 ตัว ประกอบด้วยสุนัขปอมเมอเรเนียนอายุระหว่าง 1-8 ปีจำนวน 9 ตัว สุนัขปอมเมอเรเนียนอายุ 8 ปีขึ้นไปจำนวน 9 ตัว และสุนัขที่แสดงอาการภาวะความจำเสื่อมจำนวน 10 ตัว สุนัขทั้งหมดจะรับการทดสอบจากการวินิจฉัยด้วยภาพ CT scan และ 2 ใน 10 ตัวตรวจพบเนื้องอกในสมองซึ่งยืนยันโดยภาพ CT scan และการตรวจบัณฑิตศึกษาชั้นสูง ลักษณะของคลื่นไฟฟ้า VEP ในสุนัขปอมเมอเรเนียนอายุ 1-8 ปีและกลุ่มอายุมากกว่า 8 ปีไม่ได้มีความแตกต่างกันอย่างมีนัยสำคัญ (p>0.05) แต่ละกลุ่มมีคลื่นไฟฟ้า VEP ในส่วน P2 และ P3 มีความยาวขึ้นในสุนัขที่มีภาวะความจำเสื่อมเมื่อเทียบกับสุนัขปกติอย่างมีนัยสำคัญ (p<0.05) รูปแบบของคลื่นไฟฟ้า VEP ในสุนัขที่มีภาวะความจำเสื่อมแตกต่างจากสุนัขที่มีเนื้องอกในสมอง สุนัขที่มีภาวะความจำเสื่อมได้รับการตรวจวินิจฉัยด้วยการตรวจ VEP เป็นเทคนิคที่น่าเชื่อถือในการตรวจวินิจฉัยภาวะความจำเสื่อมในสุนัขปอมเมอเรเนียน

ค่าสั้นยุท:\ สมองฝ่อลีบ ภาวะความจำเสื่อม สุนัข สุนัขปอมเมอเรเนียน visual evoked potential

1ศูนย์เทคโนโลยีชีวภาพเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน กรุงเทพฯ 73140
2ศูนย์ความเป็นเลิศด้านเทคโนโลยีชีวภาพเกษตร สานักพัฒนาบัณฑิตศึกษาและวิจัยด้านวิทยาศาสตร์และเทคโนโลยี สานักงานคณะกรรมการการอุดมศึกษา กรุงเทพฯ 10900
3โรงพยาบาลสัตว์เพื่อการเรียนการสอน คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน กรุงเทพฯ 10900
4ภาควิชาเวชศาสตร์คลินิกสัตว์เลี้ยง คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน กรุงเทพฯ 73140
*ผู้รับผิดชอบบทความ E-mail: fvetatn@ku.ac.th