Case report: Efficacy of Combination of Electroacupuncture and Aquapuncture Using Vitamin B Complex on Promotion of Ambulation Perception in 15 Dogs with Hansen Type I Intervertebral Disc Disease Undergoing Hemilaminectomy

Yu-Chun Cheng¹ Jian-Liang Lin¹ Sophia Hsiao-ching Su¹ Pin-Cheng Shih¹ Kuan-Sheng Chen¹,² Hsien-Chi Wang¹,² Wei-Ming Lee¹,²*

Abstract

Fifteen Dachshunds, 6 females and 9 males, aged from 3 to 7.1 years old and weighing from 8.9 to 18.4 kg, were presented with various degrees of paralysis with deep pain on both limbs. The existence of clinical signs was observed by the owners and ranged from 1 to over 7 days. These dogs showed grades of dysfunction ranging from 2 to 5 depending on neurological examination. Hansen type I IVDD was diagnosed in these dogs based on the neurological and imaging examination. Hemilaminectomy was performed on these dogs. Electroacupuncture (using 15-40 Hz on acupoints hua-tuo-jia-ji, GV-14, Bai-hui, KID-1 for 20 mins) was applied 3 days post hemilaminectomy, followed by aquapuncture using vitamin B complex treatment. Five of the fifteen dogs with grade 2 recovered in 7 to 30 days (average 18.6 days) after hemilaminectomy. However, with the combination of hemilaminectomy and electroacupuncture/aquapuncture the recovery time in 3/15 dogs with grade 2 was 12, 18 and 19 days (average 16.3 days), respectively. Therefore, hemilaminectomy combined with electroacupuncture and aquapuncture may be used as a complementary therapy for dogs with IVDD and can shorten the average recovery time, at least, in grade 2 of dysfunction for thoracic and lumbar lesions.

Keywords: aquapuncture, dog, electroacupuncture, hemilaminectomy, intervertebral disc disease

¹Veterinary Medical Teaching Hospital, National Chung-Hsing University, 250-1, Kuo Kuang Rd., 402 Taichung, Taiwan
²Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 250, Kuo Kuang Rd., 402 Taichung, Taiwan
*Correspondence: wmllee@dragon.nchu.edu.tw

Introduction

Intervertebral disc disease (IVDD) is caused by degeneration in the cervical or thoracolumbar areas of the spinal column (Schmied et al., 2011). IVDD can be observed from pain during palpation or behavioral change, from back pain to even paralysis of both hind limbs (Sharp and Wheeler, 2005). Apart from neurological examination, the diagnosis of IVDD is based on the observation of image such as myelogram or/computed tomography (CT) (Schmied et al., 2011; Bibevski et al., 2013). Relief of clinical signs in dogs with IVDD is resort to surgery (Scott, 1997; Scott and McKee, 1999). Acupuncture has been used as a complementary treatment for many years (Buchli, 1975). Recently, electroacupuncture has been used on dogs with intervertebral disc herniation (Han et al., 2010) and aquapuncture has been used on animals such as horses (Luna et al., 2008) and dogs (Shia et al., 2011; Chang et al., 2012). Based on the effect of electroacupuncture and aquapuncture on IVDD, IP maintance, a combination of the use of electroacupuncture and aquapuncture, may be beneficial to the recovery time after hemilaminectomy. In aquapuncture, 0.1 ml vitamin B complex is injected into acupoints. Each ml of vitamin B complex consists of thiamine HCl 100 mg, riboflavin 5 mg, pyridoxine HCl 2 mg, niacinamide 50 mg and dexamethasone 5 mg, and is beneficial to neural activity (Abdollahifard et al., 2014) and myelin formation in nerve cells (Naghashpour et al., 2013). Thus, the purpose of this report was to present the benefit of electroacupuncture/aquapuncture on the promotion of ambulation perception recovery in dogs with IVDD.

Case History

Fifteen Dachshunds with weakness to paralysis of both hind limbs were presented at Veterinary Medical Teaching Hospital (VMTH), National Chung Hsing University, Taichung, Taiwan. Duration of the occurrence of clinical signs was from 1 day to >7 days (Table 1).

Table 1 Information, treatment and recovery time of 15 dogs with Hansen Type I IVDD

<table>
<thead>
<tr>
<th>Dog</th>
<th>Gender (F/M)</th>
<th>BW (Kg)</th>
<th>Age (Years)</th>
<th>Occurrence (Days)</th>
<th>Grade</th>
<th>Treatment</th>
<th>Recovery (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>9.5</td>
<td>7.1</td>
<td>1</td>
<td>3</td>
<td>H+EAQ</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>13.2</td>
<td>6.5</td>
<td>2</td>
<td>4</td>
<td>H+EAQ</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>14.2</td>
<td>4.5</td>
<td>3</td>
<td>3</td>
<td>H+EAQ</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>10.2</td>
<td>4.1</td>
<td>2</td>
<td>2</td>
<td>H+EAQ</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>12.7</td>
<td>6.3</td>
<td>2</td>
<td>4</td>
<td>H+EAQ</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>10.5</td>
<td>3.0</td>
<td>1</td>
<td>2</td>
<td>H+EAQ</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>18.4</td>
<td>6.3</td>
<td>>7</td>
<td>4</td>
<td>H+EAQ</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>17.5</td>
<td>5.3</td>
<td>3</td>
<td>2</td>
<td>H+EAQ</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>13.5</td>
<td>6.3</td>
<td>2</td>
<td>5</td>
<td>H+EAQ</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>17.8</td>
<td>6.1</td>
<td>2</td>
<td>5</td>
<td>H+EAQ</td>
<td>180</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>8.9</td>
<td>4.8</td>
<td>2</td>
<td>2</td>
<td>H+EAQ</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>10.1</td>
<td>6.1</td>
<td>2</td>
<td>2</td>
<td>H+EAQ</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>16.7</td>
<td>6.5</td>
<td>2</td>
<td>2</td>
<td>H+EAQ</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>17.5</td>
<td>5.7</td>
<td>1</td>
<td>2</td>
<td>H+EAQ</td>
<td>21</td>
</tr>
</tbody>
</table>

H, hemilaminectomy
EAQ, electroacupuncture and aquapuncture

Table 2 Grades of dysfunction for thoracic and lumbar lesions*

<table>
<thead>
<tr>
<th>Grade</th>
<th>Outcome of neurological examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pain only</td>
</tr>
<tr>
<td>2</td>
<td>Paraparesis-walking</td>
</tr>
<tr>
<td>3</td>
<td>Paraparesis-not walking</td>
</tr>
<tr>
<td>4</td>
<td>paraplegia</td>
</tr>
<tr>
<td>5</td>
<td>Paraplegia with loss of deep pain sensation</td>
</tr>
</tbody>
</table>

Clinical Examination

The dogs presented different degrees of thoracic and lumbar lesions (Sharp and Wheeler, 2005) which were classified as grades 1 to 5 as shown in Table 2. Neurological examination and evaluation were done for each patient before and after hemilaminectomy. Based on confirmed diagnosis (Lorenz et al., 2011*), an imaging view of subarachnoid space, for example, was found by x-ray myelogram (Fig 1) or/computed tomography (CT) (Fig 2). Based on the duration of occurrence, by imaging observation, Hansen type I IVDD was diagnosed in these dogs.

Methods of Treatment

The dogs received normal procedure of hemilaminectomy as previously described (Seim, 2007). Tramotor® (0.2 mg/kg, CRI) was given for pain management for 3 days after the surgery. Three days after the operation, we stimulated acupoints Hua-tuo-jia-ji (located on the dorsal lateral region of the back 0.5 cun lateral to the dorsal spinous process of each vertebrae from T1 to L7), GV-14 (Da-zhui, located on the midline in the depression in front of the dorsal spinous process of the T1vertebrae), Bai-hui (located...
on the dorsal midline between L7 and S1 vertebrae, and KID-1 (Yong-quan, located on the volar side of the pelvic limb between the third and fourth metatarsals underneath the central pad) by electroacupuncture (low frequency therapeutic device, HC-0601, HOMETECH®, Taiwan, 15-40 Hz for 20 mins) (Figs 3 and 4). Additionally, aquapuncture was performed by using a 1 ml syringe with a 26G specified needle which was 13 mm in length containing vitamin B complex (Tai Yu®, Taiwan, 0.1 ml/point) every other day.

Table 3 Comparison of average recovery time between H and EAQ treatment in dogs with different degrees of dysfunction of thoracolumbar lesions

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Recovery time (Days)</th>
<th>Mean Recovery time (Days)</th>
<th>No of overall recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Grade 2</td>
<td>5</td>
<td>7, 14, 21, 21 and 30</td>
<td>18.6e</td>
</tr>
<tr>
<td>H+EAQ</td>
<td>Grade 2</td>
<td>3</td>
<td>12, 18 and 19</td>
<td>16.3e</td>
</tr>
<tr>
<td></td>
<td>Grade 3</td>
<td>2</td>
<td>30 and 43</td>
<td>30.5e</td>
</tr>
<tr>
<td></td>
<td>Grade 4</td>
<td>4</td>
<td>25 to 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 5</td>
<td>1</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

*hemilaminectomy
*bhemilaminectomy plus electroacupuncture and aquapuncture
*aaverage of recovery time of grade 2 after hemilaminectomy treatment
*baverage recovery time of grade 2 after hemilaminectomy plus electroacupuncture and aquapuncture
*eaverage recovery time of grades 2, 3 and 4 after hemilaminectomy plus electroacupuncture and aquapuncture

Results and Discussion

The average number of day for recovery after treatment, the dogs being able to walk on their hind limbs, is shown in Table 3. Results indicated that the average recovery time of the dogs with grade 2 which received hemilaminectomy combined with electroacupuncture and aquapuncture was shorter (16.3 days) than that of the dogs which received only hemilaminectomy treatment (18.6 days). However, there was no significant difference. Normally, the prognosis of hemilaminectomy performance in dogs with IVDD is based on dogs with or without deep pain (Sharp and wheeler, 2005). Animals should improve within 2 to 3 weeks and significant improvement should be noticed in a month (Lorenz et al., 2011b). In this report the length of time for recovery of these dogs positively correlated with the grade; the higher the grade, the longer the time for recovery. In the dogs with grade 4 treated by hemilaminectomy combined electroacupuncture and aquapuncture, the recovery time was 25 to 45 days. In fact, electroacupuncture has been used in dogs with IVDD (Laim et al., 2009; Han et
al., 2010; Shan, 2011). We stimulated acupoints Hua-tuo-jia-ji, GV-14, Bai-hui and KID-1 by electroacupuncture in this report. The attributes and indication of Hua-tuo-jia-ji, GV-1, Bai-Hui and KID-1 have been shown to improve paresis or paralysis of the IVDD by acupuncture (Chrisman and Xie, 2007). After electroacupuncture, vitamin B complex was injected into the acupoints mentioned above. In fact, vitamin B complex has been used in aquapuncture for IOP maintance (Shia et al., 2011), anus relaxation (Chang et al., 2012) and improvement of unwillingness to walk due to some ingredients of vitamin B complex (Tadano et al., 1995). Each ml of vitamin B complex consists of thiamine HCl 100 mg, riboflavin 5 mg, pyridoxine HCl 2 mg, niacinamide 50 mg and dexpanthenol 5 mg. Thiamine is effective in neural activity (Abdollahifard et al., 2014). Riboflavin is involved in myelin formation in nerve cells (Naghashpour et al., 2013). In addition, positive effect of dexpanthenol on protection of cerebral tissue after ischaemia/reperfusion has been reported (Zakaria et al., 2011). In conclusion, hemilaminectomy combined with electroacupuncture and aquapuncture may be used as a complementary therapy for dogs with IVDD and can shorten the average recovery time, at least, in grade 2 of dysfunction for thoracic and lumbar lesions.

Figure 3 The view of electroacupuncture used on acupoints GV-14, Hua-tuo-jia-ji and Bai-hui in a Dachshund after hemilaminectomy.

Figure 4 The view of electroacupuncture used on acupoint KID-1 in a Dachshund after hemilaminectomy.
Acknowledgements

The authors would like to thank Dr. Chang, Li-Wen for helping us with English critical reading.

References

บทคัดย่อ

กรณีศึกษา: ประสิทธิภาพของการฝังเข็มกระตุ้นไฟฟ้าร่วมกับการฉีดวิตามินบีรวมต่อการฟื้นฟูการรับรู้การเคลื่อนไหวในสุนัข 15 ตัวภายหลังการรักษาโรคหมอนรองกระดูกสันหลังแบบที่ 1

การผ่าตัดยกกระดูกสันหลัง

Yu-Chun Cheng¹ Jian-Liang Lin¹ Sophia Hsiao-ching Su¹ Pin-Cheng Shih¹ Kuan-Sheng Chen¹² Hsien-Chi Wang¹² Wei-Ming Lee¹²*

สุนัขพันธุ์ดัชชุนจำนวน 15 ตัว เพศเมีย 6 ตัว และเพศผู้ 9 ตัว มีอายุระหว่าง 3 ถึง 7.1 ปี และมีน้ำหนักระหว่าง 8.9 ถึง 18.4 กิโลกรัม ติดต่อกันและมีความเจ็บป่วยแบบหลง เจ้าของสัตว์พบอาการได้ตั้งแต่ 1 วัน หรือมากกว่า 7 วัน สุนัขแสดงความต้องการณ์ในการกระทำประสาทอย่างหนึ่งระหว่างระยะ 2 ถึง 5 วัน สุนัขได้รับการวินิจฉัยเป็นโรคหมอนรองกระดูกสันหลังแบบแรกแบบที่ 1 จากการตรวจระบบประสาทและอาการเจ็บป่วย และนักวิทยาศาสตร์ได้ทำการฝังเข็มกระตุ้นไฟฟ้า (15-40 Hz on acupoints hua-tuo-jia-ji, GV-14, Bai-hui, KID-1 for 20 mins) เป็นเวลา 3 วันและตามด้วยการฉีดวิตามินรวม สุนัขจำนวน 5 ใน 15 ตัวซึ่งอยู่ในระดับ 2 หรือซึ่งอยู่ในระดับ 7 ถึง 30 วัน (เฉลี่ย 18.6 วัน) หลังการผ่าตัด อย่างไรก็ตามการผ่าตัดกระดูกสันหลังร่วมกับการฝังเข็มกระตุ้นไฟฟ้าและการฉีดวิตามินบีทำให้เวลาฟื้นตัวในสุนัขจำนวน 3 จาก 15 ตัวซึ่งอยู่ในระดับ 2 เป็น 12 18 19 วัน (เฉลี่ย 16.3 วัน) ดังนั้นจึงอาจใช้การฝังเข็มกระตุ้นไฟฟ้าและการฉีดวิตามินเป็นการรักษาเสริมจากการผ่าตัดกระดูกสันหลังสำหรับสุนัขที่เป็นโรคหมอนรองกระดูกสันหลัง และสามารถย่วยระยะเวลาฟื้นตัวอย่างน้อยสั่วนึงในความผิดปกติระดับ 2 ที่ด้านหน้าอกและเอว

คำสำคัญ: การฝังเข็มกระตุ้นไฟฟ้า การฝังเข็มกระตุ้นไฟฟ้า การผ่าตัดกระดูกสันหลัง โรคหมอนรองกระดูกสันหลัง

¹Veterinary Medical Teaching Hospital, National Chung-Hsing University, 250-1, Kuo Kuang Rd., 402 Taichung, Taiwan
²Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 250, Kuo Kuang Rd., 402 Taichung, Taiwan
*ผู้รับผิดชอบบทความ E-mail: wmllee@dragon.nchu.edu.tw